IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3260-d805470.html
   My bibliography  Save this article

Effect of the Air Flow on the Combustion Process and Preheating Effect of the Intake Manifold Burner

Author

Listed:
  • Zhishuang Li

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Ziman Wang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Haoyang Mo

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Han Wu

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Diesel engines show poor performance and high emissions under cold-start conditions. The intake manifold burner is an effective method to increase the intake air temperature and improve engine performance. In this paper, a visualization system was employed to investigate the combustion process of the intake manifold burner. The effects of diesel flow rate and airflow velocity on combustion performance were investigated. The combustion process of the intake manifold burner showed four stages: preparing stage A, rapid development stage B, steady-development stage C, and stable stage D. Flame stripping was found in stages C and D, presenting the instability of the combustion process. With the increase in air flow velocity from 1.4 m/s to 3.0 m/s, the flame stripping was enhanced, leading to the increasing combustion instability and regular flame penetration fluctuations. The average temperature rise and combustion efficiency increased with the increasing diesel flow rate, indicating the combustion enhancement. Comparison of temperature rise and combustion efficiency under 2.0 m/s and 10.0 m/s showed that stronger cross wind enhances the heat convection, improving the temperature uniformity and combustion efficiency.

Suggested Citation

  • Zhishuang Li & Ziman Wang & Haoyang Mo & Han Wu, 2022. "Effect of the Air Flow on the Combustion Process and Preheating Effect of the Intake Manifold Burner," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3260-:d:805470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    2. Simón Martínez-Martínez & Oscar A. de la Garza & Miguel García-Yera & Ricardo Martínez-Carrillo & Fausto A. Sánchez-Cruz, 2021. "Hydraulic Interactions between Injection Events Using Multiple Injection Strategies and a Solenoid Diesel Injector," Energies, MDPI, vol. 14(11), pages 1-11, May.
    3. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    4. Mitchell, Brett J. & Zare, Ali & Bodisco, Timothy A. & Nabi, Md Nurun & Hossain, Farhad M. & Ristovski, Zoran D. & Brown, Richard J., 2017. "Engine blow-by with oxygenated fuels: A comparative study into cold and hot start operation," Energy, Elsevier, vol. 140(P1), pages 612-624.
    5. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    6. Broatch, A. & Ruiz, S. & Margot, X. & Gil, A., 2010. "Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines," Energy, Elsevier, vol. 35(5), pages 2251-2260.
    7. Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with split injection," Applied Energy, Elsevier, vol. 163(C), pages 105-117.
    8. Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with single injection," Applied Energy, Elsevier, vol. 165(C), pages 335-344.
    9. Dardiotis, Christos & Martini, Giorgio & Marotta, Alessandro & Manfredi, Urbano, 2013. "Low-temperature cold-start gaseous emissions of late technology passenger cars," Applied Energy, Elsevier, vol. 111(C), pages 468-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuewen Zhang & Xiang Huang & Peiyong Ni & Xiang Li, 2023. "Strategies to Reduce Emissions from Diesel Engines under Cold Start Conditions: A Review," Energies, MDPI, vol. 16(13), pages 1-21, July.
    2. Zongyu Yue & Haifeng Liu, 2023. "Advanced Research on Internal Combustion Engines and Engine Fuels," Energies, MDPI, vol. 16(16), pages 1-8, August.
    3. Leonid Plotnikov, 2023. "Preparation and Analysis of Experimental Findings on the Thermal and Mechanical Characteristics of Pulsating Gas Flows in the Intake System of a Piston Engine for Modelling and Machine Learning," Mathematics, MDPI, vol. 11(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuewen Zhang & Xiang Huang & Peiyong Ni & Xiang Li, 2023. "Strategies to Reduce Emissions from Diesel Engines under Cold Start Conditions: A Review," Energies, MDPI, vol. 16(13), pages 1-21, July.
    2. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    3. G.M. Hasan Shahariar & Ock Taeck Lim, 2018. "A Study on Urea-Water Solution Spray-Wall Impingement Process and Solid Deposit Formation in Urea-SCR de-NO x System," Energies, MDPI, vol. 12(1), pages 1-18, December.
    4. Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
    5. Wang, Ziman & Guo, Hengjie & Wang, Chongming & Xu, Hongming & Li, Yanfei, 2017. "Microscopic level study on the spray impingement process and characteristics," Applied Energy, Elsevier, vol. 197(C), pages 114-123.
    6. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    7. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    8. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    9. Sun, Hao & Zhang, Wugao & Wang, Yixuan, 2023. "Experimental study on improving cold start performance of diesel engines at extremely low ambient temperatures with diethyl ether," Energy, Elsevier, vol. 283(C).
    10. Wang, Ziman & Wang, Bo & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik, 2016. "Microscopic characterization of isooctane spray in the near field under flash boiling condition," Applied Energy, Elsevier, vol. 180(C), pages 598-606.
    11. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Wang, Ziman & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou & Xu, Hongming, 2017. "Experimental characterization of closely coupled split isooctane sprays under flash boiling conditions," Applied Energy, Elsevier, vol. 193(C), pages 199-209.
    13. de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
    14. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    15. Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
    16. Liu, Fushui & Li, Zhishuang & Wang, Ziman & Dai, Xiaoyu & He, Xu & Lee, Chia-Fon, 2018. "Microscopic study on diesel spray under cavitating conditions by injecting fuel into water," Applied Energy, Elsevier, vol. 230(C), pages 1172-1181.
    17. Liao, Yujun & Dimopoulos Eggenschwiler, Panayotis & Rentsch, Daniel & Curto, Francesco & Boulouchos, Konstantinos, 2017. "Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems," Applied Energy, Elsevier, vol. 205(C), pages 964-975.
    18. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Jemni, Mohamed Ali & Kantchev, Gueorgui & Abid, Mohamed Salah, 2011. "Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations," Energy, Elsevier, vol. 36(5), pages 2701-2715.
    20. Pastor, J.V. & Bermúdez, V. & García-Oliver, J.M. & Ramírez-Hernández, J.G., 2011. "Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines," Energy, Elsevier, vol. 36(9), pages 5486-5496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3260-:d:805470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.