IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i6p2231-2238.html
   My bibliography  Save this article

Determining optimal electricity technology mix with high level of wind power penetration

Author

Listed:
  • De Jonghe, Cedric
  • Delarue, Erik
  • Belmans, Ronnie
  • D'haeseleer, William

Abstract

Notwithstanding its variability and limited controllability, wind power is expected to contribute strongly to electricity generation from renewable energy sources in the coming decades. Treating wind power as non-dispatchable by subtracting its output from the original load profile, results in a net load profile, which must be covered by conventional power generation. The screening curve methodology is a first approximation to find the optimal generation technology mix, based on relative cost levels. However, increased variability of the net load profile, due to wind power generation, strongly influences system operation. Therefore a static linear programming investment model is developed to determine the optimal technology mix. This alternative methodology shows a reduced capacity of inflexible generation after including operational constraints to properly account for net load variability. In order to illustrate this methodology, an example is set up, showing the sensitivity with respect to ramp rates of conventional generation, transmission interconnection and energy storage. The comparison of those different sources of system flexibility suggests that energy storage facilities better facilitate the integration of wind power generation.

Suggested Citation

  • De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:6:p:2231-2238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00566-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 67-87, Spring.
    2. Østergaard, Poul Alberg, 2006. "Ancillary services and the integration of substantial quantities of wind power," Applied Energy, Elsevier, vol. 83(5), pages 451-463, May.
    3. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    4. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    5. Hoog, David T. & Hobbs, Benjamin F., 1993. "An Integrated Resource Planning model considering customer value, emissions, and regional economic impacts," Energy, Elsevier, vol. 18(11), pages 1153-1160.
    6. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    7. Delarue, Erik & D'haeseleer, William, 2008. "Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting," Applied Energy, Elsevier, vol. 85(4), pages 171-181, April.
    8. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    9. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
    10. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    11. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    12. Dale, Lewis & Milborrow, David & Slark, Richard & Strbac, Goran, 2004. "Total cost estimates for large-scale wind scenarios in UK," Energy Policy, Elsevier, vol. 32(17), pages 1949-1956, November.
    13. Ludwig Kuntz & Felix Müsgens, 2007. "Modelling start-up costs of multiple technologies in electricity markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 21-32, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    2. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    3. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    4. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    5. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    6. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    7. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    10. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    11. Claudio Marcantonini & A.Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, , vol. 36(4), pages 205-240, October.
    12. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    13. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    14. Claudio Marcantonini, A. Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    16. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    17. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    18. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    19. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    20. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen, 2016. "Customer economics of residential photovoltaic systems: Sensitivities to changes in wholesale market design and rate structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1459-1469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:6:p:2231-2238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.