IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp1159-1172.html
   My bibliography  Save this article

Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels

Author

Listed:
  • Biswas, Kaushik
  • Desjarlais, Andre
  • Smith, Douglas
  • Letts, John
  • Yao, Jennifer
  • Jiang, Timothy

Abstract

High-performance thermal insulation is a critical need for buildings. This article presents the development and thermal characterization of composite foam insulation boards containing low-cost vacuum insulation cores. The composite foam-vacuum insulation boards were created in a semi-automatic operation in a foam insulation manufacturing plant. The low-cost vacuum insulation is a new technology called modified atmosphere insulation. The production process of modified atmosphere insulation is much simpler than traditional vacuum insulation manufacturing, and it has the potential for significant cost reduction at the same thermal performance. Prototypes of small- and full-scale composite insulation boards were created for testing and evaluation under laboratory and natural weatherization conditions. The laboratory tests showed that the overall thermal resistance of the composite insulation board is at least twice that of current rigid foam insulation used in building envelope. Ongoing test of the composite insulation in a natural exposure test facility indicates that the high thermal performance was retained through handling and installation as well as natural aging over a period of one and a half years.

Suggested Citation

  • Biswas, Kaushik & Desjarlais, Andre & Smith, Douglas & Letts, John & Yao, Jennifer & Jiang, Timothy, 2018. "Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels," Applied Energy, Elsevier, vol. 228(C), pages 1159-1172.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1159-1172
    DOI: 10.1016/j.apenergy.2018.06.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiangyu & Chen, Huisu & Li, Huiqiang & Liu, Lin & Lu, Zeyu & Zhang, Tao & Duan, Wen Hui, 2015. "Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage," Applied Energy, Elsevier, vol. 159(C), pages 601-609.
    2. Kalnæs, Simen Edsjø & Jelle, Bjørn Petter, 2014. "Vacuum insulation panel products: A state-of-the-art review and future research pathways," Applied Energy, Elsevier, vol. 116(C), pages 355-375.
    3. Nussbaumer, T. & Wakili, K. Ghazi & Tanner, Ch., 2006. "Experimental and numerical investigation of the thermal performance of a protected vacuum-insulation system applied to a concrete wall," Applied Energy, Elsevier, vol. 83(8), pages 841-855, August.
    4. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    5. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    6. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    7. Nemanič, V. & Zajec, B. & Žumer, M. & Figar, N. & Kavšek, M. & Mihelič, I., 2014. "Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation," Applied Energy, Elsevier, vol. 114(C), pages 320-326.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yelin & Tso, Chi Yan & Tse, Chung Fai Norman & Fong, Alan Ming-Lun & Lin, Kaixin & Sun, Yongjun, 2024. "A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate," Renewable Energy, Elsevier, vol. 220(C).
    2. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    3. Liang Guo & Wenbin Tong & Yexin Xu & Hong Ye, 2018. "Composites with Excellent Insulation and High Adaptability for Lightweight Envelopes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    4. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    5. Tomas Makaveckas & Raimondas Bliūdžius & Arūnas Burlingis, 2020. "The Influence of Different Facings of Polyisocyanurate Boards on Heat Transfer through the Wall Corners of Insulated Buildings," Energies, MDPI, vol. 13(8), pages 1-14, April.
    6. Tullio de Rubeis & Mirco Muttillo & Iole Nardi & Leonardo Pantoli & Vincenzo Stornelli & Dario Ambrosini, 2019. "Integrated Measuring and Control System for Thermal Analysis of Buildings Components in Hot Box Experiments," Energies, MDPI, vol. 12(11), pages 1-22, May.
    7. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    8. Kaushik Biswas, 2018. "Development and Validation of Numerical Models for Evaluation of Foam-Vacuum Insulation Panel Composite Boards, Including Edge Effects," Energies, MDPI, vol. 11(9), pages 1-16, August.
    9. Kaushik Biswas & Rohit Jogineedi & Andre Desjarlais, 2019. "Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites," Energies, MDPI, vol. 12(13), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    2. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.
    3. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    4. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    5. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    6. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    7. Božiček, D. & Peterková, J. & Zach, J. & Košir, M., 2024. "Vacuum insulation panels: An overview of research literature with an emphasis on environmental and economic studies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    9. Liang Guo & Wenbin Tong & Yexin Xu & Hong Ye, 2018. "Composites with Excellent Insulation and High Adaptability for Lightweight Envelopes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    10. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    11. Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
    12. Li, Xiangyu & Chen, Huisu & Li, Huiqiang & Liu, Lin & Lu, Zeyu & Zhang, Tao & Duan, Wen Hui, 2015. "Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage," Applied Energy, Elsevier, vol. 159(C), pages 601-609.
    13. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Nemanič, V. & Zajec, B. & Žumer, M. & Figar, N. & Kavšek, M. & Mihelič, I., 2014. "Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation," Applied Energy, Elsevier, vol. 114(C), pages 320-326.
    15. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    16. Kaushik Biswas & Rohit Jogineedi & Andre Desjarlais, 2019. "Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites," Energies, MDPI, vol. 12(13), pages 1-12, July.
    17. Kim, Jongmin & Jang, Choonghyo & Song, Tae-Ho, 2012. "Combined heat transfer in multi-layered radiation shields for vacuum insulation panels: Theoretical/numerical analyses and experiment," Applied Energy, Elsevier, vol. 94(C), pages 295-302.
    18. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
    19. Soo Y. Kim & Dong H. Kang & Korakot Charoensri & Jae R. Ryu & Yang J. Shin & Hyun J. Park, 2023. "Comparative Life Cycle Assessment of Reusable and Disposable Distribution Packaging for Fresh Food," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
    20. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1159-1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.