IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v94y2012icp295-302.html
   My bibliography  Save this article

Combined heat transfer in multi-layered radiation shields for vacuum insulation panels: Theoretical/numerical analyses and experiment

Author

Listed:
  • Kim, Jongmin
  • Jang, Choonghyo
  • Song, Tae-Ho

Abstract

Radiation and conduction heat transfer in stacked radiation shields to be used in the VIP (vacuum insulation panel) is investigated. Test radiation shields are multi-layered films of 32nm Al, 12μm PET and 32nm Al thicknesses, folded with regular span and stacked in staggered manner. Radius of curvature of the folded parts is measured by a three-dimensional scanner and the contact radius is calculated using Hertz contact theory. Depthwise conduction around the contact spot and two-dimensional radial conduction models are adopted for the theoretical and the numerical analyses, together with measured surface emissivity. Measurement of the effective thermal conductivity of radiation shields is conducted using a vacuum guarded hot plate apparatus. Measurements show very low values between 0.3 and 1.0mW/mK. Theoretical and numerical results agree with measurements with maximum relative error of 29.1% and 18.3%, respectively. A simplified conduction model is also proposed and shown to be very useful for practical applications. We find that the stacked radiation shields have very high insulation performance, the numerical model is fairly reliable and finally, conduction is negligibly small compared with radiation for this shield.

Suggested Citation

  • Kim, Jongmin & Jang, Choonghyo & Song, Tae-Ho, 2012. "Combined heat transfer in multi-layered radiation shields for vacuum insulation panels: Theoretical/numerical analyses and experiment," Applied Energy, Elsevier, vol. 94(C), pages 295-302.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:295-302
    DOI: 10.1016/j.apenergy.2012.01.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nussbaumer, T. & Wakili, K. Ghazi & Tanner, Ch., 2006. "Experimental and numerical investigation of the thermal performance of a protected vacuum-insulation system applied to a concrete wall," Applied Energy, Elsevier, vol. 83(8), pages 841-855, August.
    2. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    3. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Choonghyo & Jung, Haeyong & Lee, Jaehyug & Song, Tae-Ho, 2013. "Radiative heat transfer analysis in pure scattering layers to be used in vacuum insulation panels," Applied Energy, Elsevier, vol. 112(C), pages 703-709.
    2. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.
    3. Zhang Yang & Takao Katsura & Masahiro Aihara & Makoto Nakamura & Katsunori Nagano, 2017. "Development of Numerical Heat Transfer and the Structural Model to Design Slim and Translucent Vacuum Layer Type Insulation Panels to Retrofitting Insulation in Existing Buildings," Energies, MDPI, vol. 10(12), pages 1-15, December.
    4. Jessie R. Smith & Savvas Gkantonas & Epaminondas Mastorakos, 2022. "Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers," Energies, MDPI, vol. 15(6), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    2. Nemanič, V. & Zajec, B. & Žumer, M. & Figar, N. & Kavšek, M. & Mihelič, I., 2014. "Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation," Applied Energy, Elsevier, vol. 114(C), pages 320-326.
    3. Biswas, Kaushik & Desjarlais, Andre & Smith, Douglas & Letts, John & Yao, Jennifer & Jiang, Timothy, 2018. "Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels," Applied Energy, Elsevier, vol. 228(C), pages 1159-1172.
    4. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    5. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.
    6. Alam, M. & Singh, H. & Suresh, S. & Redpath, D.A.G., 2017. "Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings," Applied Energy, Elsevier, vol. 188(C), pages 1-8.
    7. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    8. Liang Guo & Wenbin Tong & Yexin Xu & Hong Ye, 2018. "Composites with Excellent Insulation and High Adaptability for Lightweight Envelopes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    9. Kalnæs, Simen Edsjø & Jelle, Bjørn Petter, 2014. "Vacuum insulation panel products: A state-of-the-art review and future research pathways," Applied Energy, Elsevier, vol. 116(C), pages 355-375.
    10. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    11. Ascione, Fabrizio & Bianco, Nicola & Rossi, Filippo de’ & Turni, Gianluca & Vanoli, Giuseppe Peter, 2012. "Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates," Applied Energy, Elsevier, vol. 97(C), pages 405-418.
    12. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    13. Sihyun Park & Bo-Hye Choi & Jae-Han Lim & Seung-Yeong Song, 2014. "Evaluation of Mechanically and Adhesively Fixed External Insulation Systems Using Vacuum Insulation Panels for High-Rise Apartment Buildings," Energies, MDPI, vol. 7(9), pages 1-23, September.
    14. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    15. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    16. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.
    18. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    19. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
    20. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:295-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.