Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhao, Deyin & Zhong, Ming & Zhang, Xu & Su, Xing, 2016. "Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining," Energy, Elsevier, vol. 102(C), pages 660-668.
- Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
- Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
- Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
- Liu, Teng & Wang, Bo & Yang, Chenglang, 2018. "Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning," Energy, Elsevier, vol. 160(C), pages 544-555.
- Jiang, C.X. & Jing, Z.X. & Cui, X.R. & Ji, T.Y. & Wu, Q.H., 2018. "Multiple agents and reinforcement learning for modelling charging loads of electric taxis," Applied Energy, Elsevier, vol. 222(C), pages 158-168.
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
- Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
- Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
- Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
- Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
- Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
- Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
- Naji, Sareh & Keivani, Afram & Shamshirband, Shahaboddin & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Mansor, Zulkefli & Lee, Malrey, 2016. "Estimating building energy consumption using extreme learning machine method," Energy, Elsevier, vol. 97(C), pages 506-516.
- Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
- Moutis, Panayiotis & Skarvelis-Kazakos, Spyros & Brucoli, Maria, 2016. "Decision tree aided planning and energy balancing of planned community microgrids," Applied Energy, Elsevier, vol. 161(C), pages 197-205.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
- Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
- Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
- Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
- Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
- Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
- Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
- Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
- Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
- Abdulrahman Alanezi & Kevin P. Hallinan & Rodwan Elhashmi, 2021. "Using Smart-WiFi Thermostat Data to Improve Prediction of Residential Energy Consumption and Estimation of Savings," Energies, MDPI, vol. 14(1), pages 1-16, January.
- Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
- Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
- Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
- Bordbari, Mohammad Javad & Seifi, Ali Reza & Rastegar, Mohammad, 2018. "Probabilistic energy consumption analysis in buildings using point estimate method," Energy, Elsevier, vol. 142(C), pages 716-722.
More about this item
Keywords
machine learning techniques; power quality; energy management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15055-:d:1263187. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.