IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007979.html
   My bibliography  Save this article

Scalable energy management approach of residential hybrid energy system using multi-agent deep reinforcement learning

Author

Listed:
  • Wang, Zixuan
  • Xiao, Fu
  • Ran, Yi
  • Li, Yanxue
  • Xu, Yang

Abstract

Deploying renewable energy and implementing smart energy management strategies are crucial for decarbonizing Building Energy Systems (BES). Despite recent advancements in data-driven Deep Reinforcement Learning (DRL) for BES optimization, significant challenges still exist, such as the time-consuming and data-intensive nature of training DRL controllers and the complexity of environment dynamics in Multi-Agent Reinforcement Learning (MARL). Consequently, these obstacles impede the synchronization and coordination of multiple agent control, leading to slow DRL convergence performance. To address these issues. This paper proposes a novel approach to optimize hybrid building energy systems. We introduce an integrated system combining a multi-stage Proximal Policy Optimization (PPO) on-policy framework with Imitation Learning (IL), interacting with the model environment. To improve scalability and robustness of Multi-agent Systems (MAS), this approach is designed to enhance training efficiency with centralized training and decentralized execution. Simulation results of case studies demonstrate the effectiveness of the Multi-agent Deep Reinforcement Learning (MADRL) model in optimizing the operations of hybrid building energy systems in terms of indoor thermal comfort and energy efficiency. Results show the proposed framework significantly improve performance in achieving convergence in just 50 episodes for dynamic decision-making. The scalability and robustness of the proposed model have been validated across various scenarios. Compared with the baseline during cold and warm weeks, the proposed control approach achieved improvements of 34.86% and 46.10% in energy self-sufficiency ratio, respectively. Additionally, the developed MADRL effectively improved solar photovoltaic (PV) self-consumption and reduced household energy costs. Notably, it increased the average indoor temperature closer to the desired set-point by 1.33 °C, and improved the self-consumption ratio by 15.78% in the colder week and 18.47% in the warmer week, compared to baseline measurements. These findings highlight the advantages of the multi-stage PPO on-policy framework, enabling faster learning and reduced training time, resulting in cost-effective solutions and enhanced solar PV self-consumption.

Suggested Citation

  • Wang, Zixuan & Xiao, Fu & Ran, Yi & Li, Yanxue & Xu, Yang, 2024. "Scalable energy management approach of residential hybrid energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007979
    DOI: 10.1016/j.apenergy.2024.123414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.