A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.03.057
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhu, Mingming & Zhang, Zhezi & Zhang, Yang & Liu, Pengfei & Zhang, Dongke, 2017. "An experimental investigation into the ignition and combustion characteristics of single droplets of biochar water slurry fuels in air," Applied Energy, Elsevier, vol. 185(P2), pages 2160-2167.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Mian & Zhu, Xianqing & Lai, Yiming & Xia, Ao & Huang, Yun & Zhu, Xun & Liao, Qiang, 2024. "Production of hierarchical porous bio‑carbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor," Applied Energy, Elsevier, vol. 353(PA).
- Chaudhary, Amita & Lakhani, Jay & Dalsaniya, Priyank & Chaudhary, Prins & Trada, Akshit & Shah, Niraj K. & Upadhyay, Darshit S., 2023. "Slow pyrolysis of low-density Poly-Ethylene (LDPE): A batch experiment and thermodynamic analysis," Energy, Elsevier, vol. 263(PB).
- Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
- Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Saha, Arpita & Patil, Vivek & Adhikari, Sushil, 2021. "Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid," Energy, Elsevier, vol. 225(C).
- Li, Xianglin & Jiang, Yuchen & Zhang, Lijun & Li, Qingyin & Zhang, Shu & Wang, Yi & Hu, Xun, 2023. "Pyrolysis-reforming of cellulose to simultaneously produce hydrogen and heavy organics," Energy, Elsevier, vol. 265(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
- Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
- Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
- Xu, Jun & Liu, Jiawei & Ling, Peng & Zhang, Xin & Xu, Kai & He, Limo & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2020. "Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property," Energy, Elsevier, vol. 202(C).
- Michal Gruca & Michal Pyrc & Magdalena Szwaja & Stanislaw Szwaja, 2020. "Effective Combustion of Glycerol in a Compression Ignition Engine Equipped with Double Direct Fuel Injection," Energies, MDPI, vol. 13(23), pages 1-14, December.
- Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
- Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
- Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
- Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.
- Timur Valiullin & Ksenia Vershinina & Pavel Strizhak, 2019. "Ignition of Slurry Fuel Droplets with Different Heating Conditions," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2021. "Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend," Energies, MDPI, vol. 14(20), pages 1-15, October.
- Yousaf, Balal & Liu, Guijian & Abbas, Qumber & Wang, Ruwei & Ubaid Ali, Muhammad & Ullah, Habib & Liu, Ruijia & Zhou, Chuncai, 2017. "Systematic investigation on combustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass- and biochar-coal co-combustion systems," Applied Energy, Elsevier, vol. 208(C), pages 142-157.
- Zhang, Yu & Huang, Ronghua & Huang, Yuhan & Huang, Sheng & Ma, Yinjie & Xu, Shijie & Zhou, Pei, 2018. "Effect of ambient temperature on the puffing characteristics of single butanol-hexadecane droplet," Energy, Elsevier, vol. 145(C), pages 430-441.
- Vershinina, K.Yu. & Shlegel, N.E. & Strizhak, P.A., 2019. "Recovery of waste-derived and low-grade components within fuel slurries," Energy, Elsevier, vol. 183(C), pages 1266-1277.
- Zhang, Yu & Huang, Ronghua & Chen, Xi & Qin, Tian & Huang, Sheng & Zhou, Pei & Lou, Chun, 2019. "Experimental study on auto-ignition characteristics of a butanol-hexadecane droplet under elevated pressures and temperatures," Energy, Elsevier, vol. 171(C), pages 654-665.
More about this item
Keywords
Biomass; Cellulose; Chemical treatment; Crystallinity; Pyrolysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:87-93. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.