IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032492.html
   My bibliography  Save this article

Pyrolysis-reforming of cellulose to simultaneously produce hydrogen and heavy organics

Author

Listed:
  • Li, Xianglin
  • Jiang, Yuchen
  • Zhang, Lijun
  • Li, Qingyin
  • Zhang, Shu
  • Wang, Yi
  • Hu, Xun

Abstract

The small molecular organics in bio-oil could not be effectively transformed into hydrocarbons with long aliphatic chains or aromatic rings via hydrotreatment, but they could be reformed with steam to generate hydrogen for the hydrotreatment. In this study, the pyrolysis of cellulose coupled with steam reforming of volatiles of small molecular size were performed at 400–600 °C over Ni/Al2O3 catalyst, which is termed as a pyro-reforming process for simultaneous production of hydrogen and heavy organics for further production of biofuels. The results indicated that the effective reforming of small volatiles became dominant at 600 °C. The coke formed at the low temperatures was mainly polymeric coke of aliphatic nature with low thermal stability, low carbon crystallinity, high reactivity towards oxidation and high hydrophilicity. Increase of temperature to 600 °C reduced the formation of coke (from maximum of 15.0%–12.8%) and suppressed the formation of polymeric coke by promoting gasification of precursors of coke. This enhanced formation of catalytic coke with amorphous morphology as well as defective ring structures. However, homogeneous polymerization of volatiles also took place, forming amorphous coke between catalyst particles. Formation of polymeric coke should be tackled for the successful implementation of pyro-reforming process.

Suggested Citation

  • Li, Xianglin & Jiang, Yuchen & Zhang, Lijun & Li, Qingyin & Zhang, Shu & Wang, Yi & Hu, Xun, 2023. "Pyrolysis-reforming of cellulose to simultaneously produce hydrogen and heavy organics," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032492
    DOI: 10.1016/j.energy.2022.126363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
    2. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    3. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    4. Zhang, Zhezi & Zhu, Mingming & Zhang, Dongke, 2018. "A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass," Applied Energy, Elsevier, vol. 220(C), pages 87-93.
    5. Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
    6. Situmorang, Yohanes Andre & Zhao, Zhongkai & An, Ping & Yu, Tao & Rizkiana, Jenny & Abudula, Abuliti & Guan, Guoqing, 2020. "A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process," Applied Energy, Elsevier, vol. 268(C).
    7. Liu, Chao & Liu, Jingyong & Evrendilek, Fatih & Xie, Wuming & Kuo, Jiahong & Buyukada, Musa, 2020. "Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS," Renewable Energy, Elsevier, vol. 148(C), pages 1074-1093.
    8. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Chen, Cheng & Volpe, Roberto & Jiang, Xi, 2021. "A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation," Applied Energy, Elsevier, vol. 302(C).
    4. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Colucci, Gianvito & Lerede, Daniele & Nicoli, Matteo & Savoldi, Laura, 2023. "A dynamic accounting method for CO2 emissions to assess the penetration of low-carbon fuels: application to the TEMOA-Italy energy system optimization model," Applied Energy, Elsevier, vol. 352(C).
    6. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    7. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    9. Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
    10. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    11. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
    12. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    13. Granada, Camille E. & Hasan, Camila & Marder, Munique & Konrad, Odorico & Vargas, Luciano K. & Passaglia, Luciane M.P. & Giongo, Adriana & de Oliveira, Rafael R. & Pereira, Leandro de M. & de Jesus Tr, 2018. "Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae," Renewable Energy, Elsevier, vol. 118(C), pages 840-846.
    14. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    15. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    16. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    17. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    18. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    19. Li, Chao & Li, Yuannian & Jiang, Yuchen & Zhang, Lijun & Zhang, Shu & Ding, Kuan & Li, Bin & Wang, Shuang & Hu, Xun, 2023. "Staged pyrolysis of biomass to probe the evolution of fractions of bio-oil," Energy, Elsevier, vol. 263(PD).
    20. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.