IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4553-d292230.html
   My bibliography  Save this article

Ignition of Slurry Fuel Droplets with Different Heating Conditions

Author

Listed:
  • Timur Valiullin

    (National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

  • Ksenia Vershinina

    (National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

  • Pavel Strizhak

    (National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

Abstract

This paper describes modern research methods of the ignition and combustion processes of slurry fuel droplets. The experiments were carried out using a muffle furnace to ensure the conditions of radiation heating, the hot surface to reproduce the conditions of conductive heating, the high-temperature channel with convective heating, the chamber with the processes of soaring, i.e., a significant increase in the time of fuel residence in the combustion chamber. We identified the differences in combustion modes, threshold ignition temperatures, delay times and durations of combustion processes. We obtained the quantitative differences in the characteristics of the ignition and combustion processes for typical registration methods. It was found that for all heating schemes, the minimum ignition temperatures have comparable values. Minimum ignition delay times were recorded during convective heating. The maximum combustion temperatures were achieved with radiation heating. We determined the values of limiting heat fluxes, sufficient to initiate the combustion of slurries fuels during conductive, convective and radiative heating.

Suggested Citation

  • Timur Valiullin & Ksenia Vershinina & Pavel Strizhak, 2019. "Ignition of Slurry Fuel Droplets with Different Heating Conditions," Energies, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4553-:d:292230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guan-Bang Chen & Samuel Chatelier & Hsien-Tsung Lin & Fang-Hsien Wu & Ta-Hui Lin, 2018. "A Study of Sewage Sludge Co-Combustion with Australian Black Coal and Shiitake Substrate," Energies, MDPI, vol. 11(12), pages 1-25, December.
    2. Gurjap Singh & Mehdi Esmaeilpour & Albert Ratner, 2019. "Investigation of Combustion Properties and Soot Deposits of Various US Crude Oils," Energies, MDPI, vol. 12(12), pages 1-16, June.
    3. Alexander Bogomolov & Timur Valiullin & Ksenia Vershinina & Sergey Shevyrev & Nikita Shlegel, 2019. "Igniting Soaring Droplets of Promising Fuel Slurries," Energies, MDPI, vol. 12(2), pages 1-19, January.
    4. Zhu, Mingming & Zhang, Zhezi & Zhang, Yang & Liu, Pengfei & Zhang, Dongke, 2017. "An experimental investigation into the ignition and combustion characteristics of single droplets of biochar water slurry fuels in air," Applied Energy, Elsevier, vol. 185(P2), pages 2160-2167.
    5. Junfeng Wang & Yansong Zhang & Huifeng Su & Jinshe Chen & Bo Liu & Yuyuan Zhang, 2019. "Explosion Characteristics and Flame Propagation Behavior of Mixed Dust Cloud of Coal Dust and Oil Shale Dust," Energies, MDPI, vol. 12(20), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jian & Wang, Zhenghui & Zhang, Yanni & Li, Yang & Tam, Wai Cheong & Kong, Depeng & Deng, Jun, 2024. "New insights into the ignition characteristics of liquid fuels on hot surfaces based on TG-FTIR," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    2. Wilhelm Jan Tic & Joanna Guziałowska-Tic, 2019. "The Effect of Modifiers and Method of Application on Fine-Coal Combustion," Energies, MDPI, vol. 12(23), pages 1-15, November.
    3. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    4. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    5. Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.
    6. Lizheng Zhao & Yanfei Du & Yusen Zeng & Zhizhong Kang & Baomin Sun, 2020. "Sulfur Conversion of Mixed Coal and Gangue during Combustion in a CFB Boiler," Energies, MDPI, vol. 13(3), pages 1-19, January.
    7. Singh, Gurjap & Esmaeilpour, Mehdi & Ratner, Albert, 2020. "Effect of carbon-based nanoparticles on the ignition, combustion and flame characteristics of crude oil droplets," Energy, Elsevier, vol. 197(C).
    8. Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2021. "Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend," Energies, MDPI, vol. 14(20), pages 1-15, October.
    9. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    10. Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
    11. Xuan Liu & Yang Teng & Kai Zhang, 2022. "Migration Behaviors of As, Se and Pb in Ultra-Low-Emission Coal-Fired Units and Effect of Co-Firing Sewage Sludge in CFB Boilers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    12. Zhang, Zhezi & Zhu, Mingming & Zhang, Dongke, 2018. "A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass," Applied Energy, Elsevier, vol. 220(C), pages 87-93.
    13. Dongmei Wu & Jie Gao & Ke Lu, 2022. "Dust Control Technology in Dry Directional Drilling in Soft and Broken Coal Seams," Energies, MDPI, vol. 15(10), pages 1-11, May.
    14. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    15. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    17. Ricardo N. Coimbra & Carla Escapa & Marta Otero, 2019. "Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend," Energies, MDPI, vol. 12(15), pages 1-22, August.
    18. Garikai T. Marangwanda & Daniel M. Madyira & Patrick G. Ndungu & Chido H. Chihobo, 2021. "Combustion Characterisation of Bituminous Coal and Pinus Sawdust Blends by Use of Thermo-Gravimetric Analysis," Energies, MDPI, vol. 14(22), pages 1-19, November.
    19. Xu, Jun & Liu, Jiawei & Ling, Peng & Zhang, Xin & Xu, Kai & He, Limo & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2020. "Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property," Energy, Elsevier, vol. 202(C).
    20. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4553-:d:292230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.