Author
Listed:
- Olda Alexia Cárdenas Cortez
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico
Tecnológico Nacional de México, Instituto Tecnológico Superior de Poza Rica. lll Ver, Luis Donaldo Colosio s/n, Ejido Arroyo del Maíz, Poza Rica de Hidalgo, Veracruz C.P. 93230, Mexico)
- José de Jesús Pérez Bueno
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- Yolanda Casados Mexicano
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- Maria Luisa Mendoza López
(Tecnológico Nacional de México, Instituto Tecnológico de Querétaro, Av. Tecnológico s/n Esq. M. Escobedo Col. Centro, Querétaro C.P. 76000, Mexico)
- Carlos Hernández Rodríguez
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- Alejandra Xochitl Maldonado Pérez
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- David Cruz Alejandre
(Tecnológico Nacional de México, Instituto Tecnológico Superior de Poza Rica. lll Ver, Luis Donaldo Colosio s/n, Ejido Arroyo del Maíz, Poza Rica de Hidalgo, Veracruz C.P. 93230, Mexico)
- Coraquetzali Magdaleno López
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Saltillo, Av. Industria Metalúrgica No. 1062, Parque Industrial, Ramos Arizpe, Coahuila C.P. 25900, Mexico)
- María Reina García Robles
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- Goldie Oza
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- José Germán Flores López
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
- Hugo Ruiz Silva
(Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C., Parque Tecnológico Querétaro-Sanfandila, Pedro Escobedo, Querétaro C.P. 76703, Mexico)
Abstract
Photocatalytic semiconductors require maintaining stability and pursuing higher efficiencies. The studied systems were silicon nanowires (Si NWs ), silicon nanowires with cobalt oxide nanoparticles (Si NWs -CoO NPs ), and silicon nanowires with copper nanoparticles (Si NWs -Cu NPs ). Si NWs were synthesized by metal-assisted chemical etching (MACE) from silicon wafers keeping the remaining silver nanoparticles for all three sample types. The nanowires were about 23–30 µm in length. CoO NPs and Cu NPs were deposited on Si NWs by the autocatalytic reduction processes (electroless). There were many factors in the process that affect the resulting structures and degradation efficiencies. This work shows the degradation of methyl orange (MO) together with the chemisorption of methylene blue (MB), and rhodamine 6G (Rh6G) by direct illumination with visible radiation. The MO degradation kinetics were in the sequence Si NWs -Cu NPs (88.9%) > Si NWs (85.3%) > Si NWs -CoO NPs (49.3%), with the Si NWs -Cu NPs having slightly faster kinetics. However, Si NWs -CoO NPs have slow degradation kinetics. The chemisorptions of MB and Rh6G were Si NWs -Cu NPs (87.2%; 86.88%) > Si NWs (86%; 87%) > Si NWs -CoO NPs (17.3%; 12%), showing dye desorptions together with lower chemisorption capacities. This work shows iridescence in optical microscopy images by the visible light interference caused by the spaces between the nanowire bundles.
Suggested Citation
Olda Alexia Cárdenas Cortez & José de Jesús Pérez Bueno & Yolanda Casados Mexicano & Maria Luisa Mendoza López & Carlos Hernández Rodríguez & Alejandra Xochitl Maldonado Pérez & David Cruz Alejandre &, 2022.
"CoO, Cu, and Ag Nanoparticles on Silicon Nanowires with Photocatalytic Activity for the Degradation of Dyes,"
Sustainability, MDPI, vol. 14(20), pages 1-23, October.
Handle:
RePEc:gam:jsusta:v:14:y:2022:i:20:p:13361-:d:944719
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018.
"Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells,"
Applied Energy, Elsevier, vol. 219(C), pages 199-206.
- Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019.
"Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells,"
Applied Energy, Elsevier, vol. 238(C), pages 239-248.
- Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018.
"Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst,"
Applied Energy, Elsevier, vol. 222(C), pages 369-382.
- Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021.
"Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles,"
Energies, MDPI, vol. 14(15), pages 1-12, July.
- Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018.
"In situ continuous current production from marine floating microbial fuel cells,"
Applied Energy, Elsevier, vol. 230(C), pages 78-85.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13361-:d:944719. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.