IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp408-414.html
   My bibliography  Save this article

Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application

Author

Listed:
  • Li, Jing
  • Xu, Guoxiao
  • Luo, Xingying
  • Xiong, Jie
  • Liu, Zhao
  • Cai, Weiwei

Abstract

A non-destructive swelling-filling (SF) strategy is applied for inorganic modification on Nafion by using functionalized silica (F-silica) nanoparticles as fillers. With the facilely prepared F-silica gel as SF treating agent, the mono-dispersed F-silica nanoparticles can in-situ insert into the Nafion membrane and tightly anchor on the Nafion chains through the hydrogen bonding interaction between the oxygen containing groups on F-silica fillers and –SO3H group on Nafion chains. The F-silica nanoparticles act as bi-functional fillers in the modified Nafion membrane to improve proton conductive and methanol-permeation resistive performances simultaneously. 100% enhanced proton/methanol selectivity therefore leads to a more than 30% improved direct methanol fuel cell (DMFC) performance in terms of power output. By considering the great mechanical, thermal and oxidative stabilities comprehensively, the F-silica-Nafion membranes exhibit promising application potential for high-energy DMFC application.

Suggested Citation

  • Li, Jing & Xu, Guoxiao & Luo, Xingying & Xiong, Jie & Liu, Zhao & Cai, Weiwei, 2018. "Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application," Applied Energy, Elsevier, vol. 213(C), pages 408-414.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:408-414
    DOI: 10.1016/j.apenergy.2018.01.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahriari, Mehdi & Blumsack, Seth, 2017. "Scaling of wind energy variability over space and time," Applied Energy, Elsevier, vol. 195(C), pages 572-585.
    2. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    3. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    4. Liu, Guicheng & Ding, Xianan & Zhou, Hongwei & Chen, Ming & Wang, Manxiang & Zhao, Zhenxuan & Yin, Zhuang & Wang, Xindong, 2015. "Structure optimization of cathode microporous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 147(C), pages 396-401.
    5. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    6. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    7. Seo, Sang Hern & Lee, Chang Sik, 2010. "A study on the overall efficiency of direct methanol fuel cell by methanol crossover current," Applied Energy, Elsevier, vol. 87(8), pages 2597-2604, August.
    8. Zakaria, Z. & Kamarudin, S.K. & Timmiati, S.N., 2016. "Membranes for direct ethanol fuel cells: An overview," Applied Energy, Elsevier, vol. 163(C), pages 334-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoxiao Xu & Xinwei Dong & Bin Xue & Jianyou Huang & Junli Wu & Weiwei Cai, 2023. "Recent Approaches to Achieve High Temperature Operation of Nafion Membranes," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Xu, Guoxiao & Wu, Zhiguang & Wei, Zenglv & Zhang, Wenjie & Wu, Junli & Li, Ying & Li, Jing & Qu, Konggang & Cai, Weiwei, 2020. "Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 935-939.
    3. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Xu, Jingmei & Zhang, Zhenguo & Yang, Kai & Zhang, Huixuan & Wang, Zhe, 2019. "Synthesis and properties of novel cross-linked composite sulfonated poly (aryl ether ketone sulfone) containing multiple sulfonic side chains for high-performance proton exchange membranes," Renewable Energy, Elsevier, vol. 138(C), pages 1104-1113.
    5. Jiang, Jinghui & Li, Yinshi & Liang, Jiarong & Yang, Weiwei & Li, Xianglin, 2019. "Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Zhou, Jing & Cao, Jiamu & Zhang, Yufeng & Liu, Junfeng & Chen, Junyu & Li, Mingxue & Wang, Weiqi & Liu, Xiaowei, 2021. "Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    2. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    5. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    6. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    7. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    8. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    9. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    10. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    12. Teixeira, Fátima C. & Teixeira, António P.S. & Rangel, C.M., 2022. "New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC," Renewable Energy, Elsevier, vol. 196(C), pages 1187-1196.
    13. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    14. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    15. Zaffar Ahmed Shaikh & Polina Datsyuk & Laura M. Baitenova & Larisa Belinskaja & Natalia Ivolgina & Gulmira Rysmakhanova & Tomonobu Senjyu, 2022. "Effect of the COVID-19 Pandemic on Renewable Energy Firm’s Profitability and Capitalization," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    16. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    17. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    18. Min Wang & Xiaobin Dong & Youchun Zhai, 2021. "Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage," Energies, MDPI, vol. 14(21), pages 1-12, October.
    19. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    20. Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:408-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.