IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp396-401.html
   My bibliography  Save this article

Structure optimization of cathode microporous layer for direct methanol fuel cells

Author

Listed:
  • Liu, Guicheng
  • Ding, Xianan
  • Zhou, Hongwei
  • Chen, Ming
  • Wang, Manxiang
  • Zhao, Zhenxuan
  • Yin, Zhuang
  • Wang, Xindong

Abstract

To obtain the cathode microporous layer (CML) with high mass transfer performance and high electronic conductivity, a pore-forming technology was introduced to optimize CML microstructure for direct methanol fuel cells. In this paper, the effects of carbon material type, carbon material loading and pore-forming agent loading in CML on fuel cell performance were discussed systematically. The results indicated that the optimized CML consisted of carbon nanotubes and ammonium oxalate with the loading of 1.5 and 3.5mgcm−2 respectively. The fuel cell performance was improved by 30.3%, from 224 to 292mWcm−2 at 80°C under 0.3MPa O2. Carbon nanotube was found to be the most suitable carbon material for the CML due to its great specific surface area and small particle size, resulting in increasing the number of the hydrophobic sites and the contact area between the support and the catalyst layer. The carbon material and pore-forming agent loading directly influenced the pore distribution and the contact resistance of membrane electrode assembly. The water removal capacity and the gas mass transfer property of diffusion layer were improved by optimizing the amount of micropore and macropore structures.

Suggested Citation

  • Liu, Guicheng & Ding, Xianan & Zhou, Hongwei & Chen, Ming & Wang, Manxiang & Zhao, Zhenxuan & Yin, Zhuang & Wang, Xindong, 2015. "Structure optimization of cathode microporous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 147(C), pages 396-401.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:396-401
    DOI: 10.1016/j.apenergy.2015.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karim, N.A. & Kamarudin, S.K., 2013. "An overview on non-platinum cathode catalysts for direct methanol fuel cell," Applied Energy, Elsevier, vol. 103(C), pages 212-220.
    2. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    2. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    3. Li, Jing & Xu, Guoxiao & Luo, Xingying & Xiong, Jie & Liu, Zhao & Cai, Weiwei, 2018. "Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application," Applied Energy, Elsevier, vol. 213(C), pages 408-414.
    4. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    5. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    6. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    7. Deng, Hao & Wang, Dawei & Wang, Renfang & Xie, Xu & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1272-1278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    2. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    3. Yuan, Wei & Wang, Aoyu & Yan, Zhiguo & Tan, Zhenhao & Tang, Yong & Xia, Hongrong, 2016. "Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields," Applied Energy, Elsevier, vol. 179(C), pages 85-98.
    4. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    5. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    6. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    7. Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
    8. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    9. Wang, Aoyu & Yuan, Wei & Huang, Shimin & Tang, Yong & Chen, Yu, 2017. "Structural effects of expanded metal mesh used as a flow field for a passive direct methanol fuel cell," Applied Energy, Elsevier, vol. 208(C), pages 184-194.
    10. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    11. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    12. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    13. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    14. Halima Alnaqbi & Oussama El-Kadri & Mohammad Ali Abdelkareem & Sameer Al-Asheh, 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-25, November.
    15. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    16. Yuan, Rong-hua & He, Yun & He, Wei & Ni, Meng & Leung, Michael K.H., 2019. "Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Baik, Kyung Don & Seo, Il Sung, 2018. "Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 212(C), pages 333-339.
    18. Zhengang Zhao & Fan Zhang & Yanhui Zhang & Dacheng Zhang, 2021. "Performance Optimization of μ DMFC with Foamed Stainless Steel Cathode Current Collector," Energies, MDPI, vol. 14(20), pages 1-13, October.
    19. Yuan, Wei & Zhang, Xiaoqing & Zhang, Shiwei & Hu, Jinyi & Li, Zongtao & Tang, Yong, 2015. "Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell," Renewable Energy, Elsevier, vol. 81(C), pages 664-670.
    20. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:396-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.