IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p43-d467308.html
   My bibliography  Save this article

Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines

Author

Listed:
  • Thomas Lauer

    (Institute of Powertrains and Automotive Technology, TU Wien, 1060 Vienna, Austria)

  • Jens Frühhaber

    (Institute of Powertrains and Automotive Technology, TU Wien, 1060 Vienna, Austria)

Abstract

Frequently the question arises in what sense numerical simulation can be considered predictive if prior model tuning with test results is necessary. In this paper a summary of the present Computational Fluid Dynamics (CFD) simulation methods for in-cylinder modelling is presented with a focus on combustion processes relevant for large engines. The current discussion about the sustainability of internal combustion engines will have a strong impact on applying advanced CFD methods in industrial processes. It is therefore included in the assessment. Simplifications and assumptions of turbulence, spray, and combustion models, as well as uncertainties of model boundary conditions, are discussed and the future potential of an advanced approach like Large Eddy Simulation (LES) is evaluated. It follows that a high amount of expertise and a careful evaluation of the numerical results will remain necessary in the future to apply the best-suited models for a given combustion process. New chemical mechanisms will have to be developed in order to represent prospective fuels like hydrogen or OME. Multi-injection or dual fuel combustion will further pose high requirements to the numerical methods. Therefore, the further development and validation of advanced mixture, combustion and emission models will remain important. Close cooperation between academia, code suppliers and engine manufacturers could promote the necessary progress.

Suggested Citation

  • Thomas Lauer & Jens Frühhaber, 2020. "Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines," Energies, MDPI, vol. 14(1), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:43-:d:467308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ceyuan & Pal, Pinaki & Ameen, Muhsin & Feng, Dengquan & Wei, Haiqiao, 2020. "Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine," Applied Energy, Elsevier, vol. 261(C).
    2. Yue, Zongyu & Reitz, Rolf D., 2019. "Numerical investigation of radiative heat transfer in internal combustion engines," Applied Energy, Elsevier, vol. 235(C), pages 147-163.
    3. Lucas Eder & Marko Ban & Gerhard Pirker & Milan Vujanovic & Peter Priesching & Andreas Wimmer, 2018. "Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    4. d'Adamo, A. & Breda, S. & Berni, F. & Fontanesi, S., 2019. "The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine," Applied Energy, Elsevier, vol. 249(C), pages 126-142.
    5. Gong, Cheng & Jangi, Mehdi & Bai, Xue-Song, 2014. "Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel," Applied Energy, Elsevier, vol. 136(C), pages 373-381.
    6. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    2. d'Adamo, A. & Iacovano, C. & Fontanesi, S., 2020. "Large-Eddy simulation of lean and ultra-lean combustion using advanced ignition modelling in a transparent combustion chamber engine," Applied Energy, Elsevier, vol. 280(C).
    3. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    4. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    5. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    6. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    7. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    8. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    9. Pla, Benjamí n & Bares, Pau & Jiménez, Irina & Guardiola, Carlos & Zhang, Yahui & Shen, Tielong, 2020. "A fuzzy logic map-based knock control for spark ignition engines," Applied Energy, Elsevier, vol. 280(C).
    10. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    12. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    13. Wei, Yi & Zhang, Zunhua & Zhou, Mengni & Yu, Weiping & Zhang, Xiangjie & Hu, Jiajia & Mi, Xiaoxiong & Li, Gesheng, 2024. "Effects of ambient pressures on cool flames in n-dodecane spray studied with laser diagnostics and large-eddy simulations," Energy, Elsevier, vol. 294(C).
    14. Zhu, Yizi & He, Zhixia & Xuan, Tiemin & Shao, Zhuang, 2024. "An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines," Applied Energy, Elsevier, vol. 362(C).
    15. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    16. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    17. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    18. Shi, Hao & Uddeen, Kalim & An, Yanzhao & Pei, Yiqiang & Johansson, Bengt, 2021. "Multiple spark plugs coupled with pressure sensors: A new approach for knock mechanism study on SI engines," Energy, Elsevier, vol. 227(C).
    19. Karvounis, Nikolas & Pang, Kar Mun & Mayer, Stefan & Walther, Jens Honoré, 2018. "Numerical simulation of condensation of sulfuric acid and water in a large two-stroke marine diesel engine," Applied Energy, Elsevier, vol. 211(C), pages 1009-1020.
    20. Raza, Mohsin & Wang, Hu & Yao, Mingfa, 2019. "Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline," Applied Energy, Elsevier, vol. 242(C), pages 462-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:43-:d:467308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.