Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.02.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sigurdsson, E. & Ingvorsen, K.M. & Jensen, M.V. & Mayer, S. & Matlok, S. & Walther, J.H., 2014. "Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines," Applied Energy, Elsevier, vol. 123(C), pages 37-46.
- Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
- Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Karvounis, Nikolas & Pang, Kar Mun & Mayer, Stefan & Walther, Jens Honoré, 2018. "Numerical simulation of condensation of sulfuric acid and water in a large two-stroke marine diesel engine," Applied Energy, Elsevier, vol. 211(C), pages 1009-1020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
- Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
- Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
- Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
- Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
- Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
- Maria Faruoli & Alessandro Coclite & Annarita Viggiano & Paolo Caso & Vinicio Magi, 2021. "A Comprehensive Numerical Analysis of the Scavenging Process in a Uniflow Two-Stroke Diesel Engine for General Aviation," Energies, MDPI, vol. 14(21), pages 1-19, November.
- Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
- Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
- Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Gang Wu & Xinyi Zhou & Tie Li, 2019. "Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures," Energies, MDPI, vol. 12(22), pages 1-23, November.
- Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
- Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
- Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
- Karvounis, Nikolas & Pang, Kar Mun & Mayer, Stefan & Walther, Jens Honoré, 2018. "Numerical simulation of condensation of sulfuric acid and water in a large two-stroke marine diesel engine," Applied Energy, Elsevier, vol. 211(C), pages 1009-1020.
- Kyrtatos, Panagiotis & Brückner, Clemens & Boulouchos, Konstantinos, 2016. "Cycle-to-cycle variations in diesel engines," Applied Energy, Elsevier, vol. 171(C), pages 120-132.
- Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
- Thomas Lauer & Jens Frühhaber, 2020. "Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines," Energies, MDPI, vol. 14(1), pages 1-26, December.
- Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & Yu, Hanzhengnan & Liu, Hai, 2019. "Development of surrogate fuels for heavy fuel oil in marine engine," Energy, Elsevier, vol. 185(C), pages 961-970.
- Yin, Chungen, 2017. "Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model," Applied Energy, Elsevier, vol. 189(C), pages 449-459.
More about this item
Keywords
Combustion; Heavy fuel oil; Sulphuric oxides; Sulphuric acid; Marine engine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:193:y:2017:i:c:p:60-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.