IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp497-508.html
   My bibliography  Save this article

On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified Wiener continuous-time model

Author

Listed:
  • Allafi, Walid
  • Uddin, Kotub
  • Zhang, Cheng
  • Mazuir Raja Ahsan Sha, Raja
  • Marco, James

Abstract

The accuracy of identifying the parameters of models describing lithium ion batteries (LIBs) in typical battery management system (BMS) applications is critical to the estimation of key states such as the state of charge (SoC) and state of health (SoH). In applications such as electric vehicles (EVs) where LIBs are subjected to highly demanding cycles of operation and varying environmental conditions leading to non-trivial interactions of ageing stress factors, this identification is more challenging. This paper proposes an algorithm that directly estimates the parameters of a nonlinear battery model from measured input and output data in the continuous time-domain. The simplified refined instrumental variable method is extended to estimate the parameters of a Wiener model where there is no requirement for the nonlinear function to be invertible. To account for nonlinear battery dynamics, in this paper, the typical linear equivalent circuit model (ECM) is enhanced by a block-oriented Wiener configuration where the nonlinear memoryless block following the typical ECM is defined to be a sigmoid static nonlinearity. The nonlinear Weiner model is reformulated in the form of a multi-input, single-output linear model. This linear form allows the parameters of the nonlinear model to be estimated using any linear estimator such as the well-established least squares (LS) algorithm. In this paper, the recursive least square (RLS) method is adopted for online parameter estimation. The approach was validated on experimental data measured from an 18650-type Graphite/Lithium-Nickel-Cobalt-Aluminium-Oxide (C6/LiNiCoAlO2) lithium-ion cell. A comparison between the results obtained by the proposed method and by nonparametric frequency-based approaches for obtaining the model parameters is presented. It is shown that although both approaches give similar estimates, the advantages of the proposed method are (i) the simplicity by which the algorithm can be employed on-line for updating nonlinear equivalent circuit model (NL-ECM) parameters and (ii) the improved convergence efficiency of the on-line estimation.

Suggested Citation

  • Allafi, Walid & Uddin, Kotub & Zhang, Cheng & Mazuir Raja Ahsan Sha, Raja & Marco, James, 2017. "On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified Wiener continuous-time model," Applied Energy, Elsevier, vol. 204(C), pages 497-508.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:497-508
    DOI: 10.1016/j.apenergy.2017.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Haifeng & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan & Gu, Weijun, 2012. "Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications," Applied Energy, Elsevier, vol. 95(C), pages 227-237.
    2. Marongiu, Andrea & Nußbaum, Felix Gerd Wilhelm & Waag, Wladislaw & Garmendia, Maitane & Sauer, Dirk Uwe, 2016. "Comprehensive study of the influence of aging on the hysteresis behavior of a lithium iron phosphate cathode-based lithium ion battery – An experimental investigation of the hysteresis," Applied Energy, Elsevier, vol. 171(C), pages 629-645.
    3. Xia, Bing & Zhao, Xin & de Callafon, Raymond & Garnier, Hugues & Nguyen, Truong & Mi, Chris, 2016. "Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods," Applied Energy, Elsevier, vol. 179(C), pages 426-436.
    4. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    5. Wang, Yujie & Chen, Zonghai & Zhang, Chenbin, 2017. "On-line remaining energy prediction: A case study in embedded battery management system," Applied Energy, Elsevier, vol. 194(C), pages 688-695.
    6. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    7. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    8. Uddin, Kotub & Moore, Andrew D. & Barai, Anup & Marco, James, 2016. "The effects of high frequency current ripple on electric vehicle battery performance," Applied Energy, Elsevier, vol. 178(C), pages 142-154.
    9. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    10. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    11. Kotub Uddin & Alessandro Picarelli & Christopher Lyness & Nigel Taylor & James Marco, 2014. "An Acausal Li-Ion Battery Pack Model for Automotive Applications," Energies, MDPI, vol. 7(9), pages 1-26, August.
    12. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.
    13. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansour Al Qubeissi & Ayob Mahmoud & Moustafa Al-Damook & Ali Almshahy & Zinedine Khatir & Hakan Serhad Soyhan & Raja Mazuir Raja Ahsan Shah, 2023. "Comparative Analysis of Battery Thermal Management System Using Biodiesel Fuels," Energies, MDPI, vol. 16(1), pages 1-19, January.
    2. Marzia Abaspour & Krishna R. Pattipati & Behnam Shahrrava & Balakumar Balasingam, 2022. "Robust Approach to Battery Equivalent-Circuit-Model Parameter Extraction Using Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 15(23), pages 1-26, December.
    3. Ataur Rahman & Kyaw Myo Aung & Sany Ihsan & Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Mohannad T. Aljarrah, 2023. "Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    5. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    7. Song, Ziyou & Hofmann, Heath & Lin, Xinfan & Han, Xuebing & Hou, Jun, 2018. "Parameter identification of lithium-ion battery pack for different applications based on Cramer-Rao bound analysis and experimental study," Applied Energy, Elsevier, vol. 231(C), pages 1307-1318.
    8. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    9. Fan, Chuanxin & O’Regan, Kieran & Li, Liuying & Higgins, Matthew D. & Kendrick, Emma & Widanage, Widanalage D., 2022. "Data-driven identification of lithium-ion batteries: A nonlinear equivalent circuit model with diffusion dynamics," Applied Energy, Elsevier, vol. 321(C).
    10. György Károlyi & Anna I. Pózna & Katalin M. Hangos & Attila Magyar, 2022. "An Optimized Fuzzy Controlled Charging System for Lithium-Ion Batteries Using a Genetic Algorithm," Energies, MDPI, vol. 15(2), pages 1-23, January.
    11. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    12. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    13. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    4. Chen, Biao & Jiang, Haobin & Chen, Xijia & Li, Huanhuan, 2022. "Robust state-of-charge estimation for lithium-ion batteries based on an improved gas-liquid dynamics model," Energy, Elsevier, vol. 238(PC).
    5. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    6. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    7. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    8. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    9. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.
    10. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    11. Fei Feng & Rengui Lu & Guo Wei & Chunbo Zhu, 2015. "Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures," Energies, MDPI, vol. 8(4), pages 1-27, April.
    12. Cunxue Wu & Rujian Fu & Zhongming Xu & Yang Chen, 2017. "Improved State of Charge Estimation for High Power Lithium Ion Batteries Considering Current Dependence of Internal Resistance," Energies, MDPI, vol. 10(10), pages 1-17, September.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    15. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    16. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    17. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    18. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    19. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:497-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.