IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics030626192101401x.html
   My bibliography  Save this article

Energy performance index of air distribution: Thermal utilization effectiveness

Author

Listed:
  • Zhang, Sheng
  • Lu, Yalin
  • Niu, Dun
  • Lin, Zhang

Abstract

The energy performance index is crucial for the energy-efficient design and operation of air distribution. Heat Removal Efficiency (HRE) is a widely used energy performance index, and Energy Utilization Coefficient (EUC) and Effectiveness of Heat Removal (EHR) are alternatives to HRE. This study justifies that these existing indices are unreasonable and incompetent as energy performance indices. This study also proposes a new index called Thermal Utilization Effectiveness (TUE) and verifies its efficacy as an energy performance index via theoretical analyses and experiments on stratum ventilation, displacement ventilation, and underfloor air distribution. EUC is not a suitable energy performance index since it does not consider the relative contributions of the occupied and unoccupied zones to the energy performance of air distribution. EHR cannot qualitatively distinguish the energy performance of air distribution because of its floating benchmark point. HRE cannot quantitatively distinguish the energy performance of air distribution because it unequally weighs the thermal energy of the air temperature of the occupied zone. TUE accounts for the relative contributions of the occupied and unoccupied zones to the energy performance with the help of the exit air temperature, qualitatively distinguishes the energy performance because of its two fixed benchmark points, and quantitatively distinguishes the energy performance by equally weighing the thermal energy of the air temperature of the occupied zone. Therefore, TUE overcomes the drawbacks of EUC, EHR, and HRE, and is a reasonable and competent energy performance index of air distribution.

Suggested Citation

  • Zhang, Sheng & Lu, Yalin & Niu, Dun & Lin, Zhang, 2022. "Energy performance index of air distribution: Thermal utilization effectiveness," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101401x
    DOI: 10.1016/j.apenergy.2021.118122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101401X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orosa, José A. & Oliveira, Armando C., 2011. "A new thermal comfort approach comparing adaptive and PMV models," Renewable Energy, Elsevier, vol. 36(3), pages 951-956.
    2. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    3. Veselý, Michal & Zeiler, Wim, 2014. "Personalized conditioning and its impact on thermal comfort and energy performance – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 401-408.
    4. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    5. Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
    6. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Cheng, Yong & Liu, Jian & Lin, Zhang, 2019. "Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    3. Kong, Xiangfei & Xi, Chang & Li, Han & Lin, Zhang, 2020. "Multi-parameter performance optimization for whole year operation of stratum ventilation in offices," Applied Energy, Elsevier, vol. 268(C).
    4. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    5. Haider Latif & Samira Rahnama & Alessandro Maccarini & Goran Hultmark & Peter V. Nielsen & Alireza Afshari, 2022. "Precision Ventilation in an Open-Plan Office: A New Application of Active Chilled Beam (ACB) with a JetCone Feature," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    6. Wan, Taocheng & Bai, Yan & Wang, Tingxiang & Wei, Zhuo, 2022. "BPNN-based optimal strategy for dynamic energy optimization with providing proper thermal comfort under the different outdoor air temperatures," Applied Energy, Elsevier, vol. 313(C).
    7. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    8. Li, Han & Fu, Zheng & Xi, Chang & Li, Nana & Li, Wei & Kong, Xiangfei, 2022. "Study on the impact of parallel jet spacing on the performance of multi-jet stratum ventilation," Applied Energy, Elsevier, vol. 306(PB).
    9. Jianlin Ren & Shasha Duan & Leihong Guo & Hongwan Li & Xiangfei Kong, 2022. "Effects of Return Air Inlets’ Location on the Control of Fine Particle Transportation in a Simulated Hospital Ward," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    10. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    11. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    13. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    14. Fong, K.F. & Lee, C.K. & Lin, Z., 2019. "Investigation on effect of indoor air distribution strategy on solar air-conditioning systems," Renewable Energy, Elsevier, vol. 131(C), pages 413-421.
    15. Han, Gang & Feng, Guozeng & Tang, Chunli & Pan, Chongyao & Zhou, Weiming & Zhu, Jintang, 2023. "Evaluation of the ventilation mode in an ISO class 6 electronic cleanroom by the AHP-entropy weight method," Energy, Elsevier, vol. 284(C).
    16. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    17. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    18. Yufeng He & Mingtao Ding & Hao Zheng & Zemin Gao & Tao Huang & Yu Duan & Xingjie Cui & Siyuan Luo, 2023. "Integrating development inhomogeneity into geological disasters risk assessment framework in mountainous areas: a case study in Lushan–Baoxing counties, Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3203-3229, July.
    19. Nick Van Loy & Griet Verbeeck & Elke Knapen, 2021. "Personal Heating in Dwellings as an Innovative, Energy-Sufficient Heating Practice: A Case Study Research," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    20. Wu, Bingjie & Cai, Wenjian & Chen, Haoran, 2021. "A model-based multi-objective optimization of energy consumption and thermal comfort for active chilled beam systems," Applied Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101401x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.