IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics030626192101401x.html
   My bibliography  Save this article

Energy performance index of air distribution: Thermal utilization effectiveness

Author

Listed:
  • Zhang, Sheng
  • Lu, Yalin
  • Niu, Dun
  • Lin, Zhang

Abstract

The energy performance index is crucial for the energy-efficient design and operation of air distribution. Heat Removal Efficiency (HRE) is a widely used energy performance index, and Energy Utilization Coefficient (EUC) and Effectiveness of Heat Removal (EHR) are alternatives to HRE. This study justifies that these existing indices are unreasonable and incompetent as energy performance indices. This study also proposes a new index called Thermal Utilization Effectiveness (TUE) and verifies its efficacy as an energy performance index via theoretical analyses and experiments on stratum ventilation, displacement ventilation, and underfloor air distribution. EUC is not a suitable energy performance index since it does not consider the relative contributions of the occupied and unoccupied zones to the energy performance of air distribution. EHR cannot qualitatively distinguish the energy performance of air distribution because of its floating benchmark point. HRE cannot quantitatively distinguish the energy performance of air distribution because it unequally weighs the thermal energy of the air temperature of the occupied zone. TUE accounts for the relative contributions of the occupied and unoccupied zones to the energy performance with the help of the exit air temperature, qualitatively distinguishes the energy performance because of its two fixed benchmark points, and quantitatively distinguishes the energy performance by equally weighing the thermal energy of the air temperature of the occupied zone. Therefore, TUE overcomes the drawbacks of EUC, EHR, and HRE, and is a reasonable and competent energy performance index of air distribution.

Suggested Citation

  • Zhang, Sheng & Lu, Yalin & Niu, Dun & Lin, Zhang, 2022. "Energy performance index of air distribution: Thermal utilization effectiveness," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101401x
    DOI: 10.1016/j.apenergy.2021.118122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101401X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    2. Orosa, José A. & Oliveira, Armando C., 2011. "A new thermal comfort approach comparing adaptive and PMV models," Renewable Energy, Elsevier, vol. 36(3), pages 951-956.
    3. Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
    4. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    5. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    6. Veselý, Michal & Zeiler, Wim, 2014. "Personalized conditioning and its impact on thermal comfort and energy performance – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 401-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Cheng, Yong & Liu, Jian & Lin, Zhang, 2019. "Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    3. Kong, Xiangfei & Xi, Chang & Li, Han & Lin, Zhang, 2020. "Multi-parameter performance optimization for whole year operation of stratum ventilation in offices," Applied Energy, Elsevier, vol. 268(C).
    4. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    5. Haider Latif & Samira Rahnama & Alessandro Maccarini & Goran Hultmark & Peter V. Nielsen & Alireza Afshari, 2022. "Precision Ventilation in an Open-Plan Office: A New Application of Active Chilled Beam (ACB) with a JetCone Feature," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    6. Wan, Taocheng & Bai, Yan & Wang, Tingxiang & Wei, Zhuo, 2022. "BPNN-based optimal strategy for dynamic energy optimization with providing proper thermal comfort under the different outdoor air temperatures," Applied Energy, Elsevier, vol. 313(C).
    7. Li, Han & Fu, Zheng & Xi, Chang & Li, Nana & Li, Wei & Kong, Xiangfei, 2022. "Study on the impact of parallel jet spacing on the performance of multi-jet stratum ventilation," Applied Energy, Elsevier, vol. 306(PB).
    8. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    9. Jianlin Ren & Shasha Duan & Leihong Guo & Hongwan Li & Xiangfei Kong, 2022. "Effects of Return Air Inlets’ Location on the Control of Fine Particle Transportation in a Simulated Hospital Ward," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    10. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    11. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    12. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
    13. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    15. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    16. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    17. Yang, Kun & Zhu, Neng & Chang, Chen & Wang, Daquan & Yang, Shan & Ma, Shengming, 2018. "A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study," Energy, Elsevier, vol. 165(PB), pages 1085-1096.
    18. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    19. Minsu Lee & Jaemin Jeong & Jaewook Jeong & Jaehyun Lee, 2021. "Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis," IJERPH, MDPI, vol. 18(11), pages 1-30, May.
    20. Yan Bai & Zhuo Wei, 2023. "A Combinatorial Optimization Strategy for Performance Improvement of Stratum Ventilation Considering Outdoor Weather Changes and Metabolic Rate Differences: Energy Consumption and Sensitivity Analysis," Sustainability, MDPI, vol. 15(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101401x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.