IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp1433-1447.html
   My bibliography  Save this article

Synergy potential for oil and geothermal energy exploitation

Author

Listed:
  • Ziabakhsh-Ganji, Zaman
  • Nick, Hamidreza M.
  • Donselaar, Marinus E.
  • Bruhn, David F.

Abstract

A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources, both for thermally enhanced oil recovery from a heavy oil reservoir and for direct heating purposes. A single phase non-isothermal fluid flow modeling for geothermal doublet system and a two-phase non-isothermal fluid flow modelling for water flooding in an oil reservoir are utilised. Sensitivity and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature. Our results show that total oil production strongly depends on the shape of heat plume which can be affected by porosity, permeability, injection temperature, well spacing and injection rate in the oil reservoir. The favourable oil recovery obtains at high amount of (a) injection rate, (b) injection temperature, (c) porosity and (d) low amount of oil reservoir permeability respectively. Furthermore, our study indicates the wellbore spacing plays an important role in oil recovery and an optimum wellbore spacing can be established. The analyses suggest that the extra amount of oil produced by utilising the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%.

Suggested Citation

  • Ziabakhsh-Ganji, Zaman & Nick, Hamidreza M. & Donselaar, Marinus E. & Bruhn, David F., 2018. "Synergy potential for oil and geothermal energy exploitation," Applied Energy, Elsevier, vol. 212(C), pages 1433-1447.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1433-1447
    DOI: 10.1016/j.apenergy.2017.12.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917318378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salimzadeh, Saeed & Nick, Hamidreza M. & Zimmerman, R.W., 2018. "Thermoporoelastic effects during heat extraction from low-permeability reservoirs," Energy, Elsevier, vol. 142(C), pages 546-558.
    2. Daniilidis, Alexandros & Scholten, Tjardo & Hooghiem, Joram & De Persis, Claudio & Herber, Rien, 2017. "Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks," Applied Energy, Elsevier, vol. 204(C), pages 254-270.
    3. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs," Applied Energy, Elsevier, vol. 113(C), pages 434-451.
    4. Willems, Cees J.L. & Nick, Hamidreza M. & Weltje, Gert Jan & Bruhn, David F., 2017. "An evaluation of interferences in heat production from low enthalpy geothermal doublets systems," Energy, Elsevier, vol. 135(C), pages 500-512.
    5. Wu, Bisheng & Zhang, Xi & Jeffrey, Robert G. & Bunger, Andrew P. & Jia, Shanpo, 2016. "A simplified model for heat extraction by circulating fluid through a closed-loop multiple-fracture enhanced geothermal system," Applied Energy, Elsevier, vol. 183(C), pages 1664-1681.
    6. Kaya, Eylem & Zarrouk, Sadiq J. & O'Sullivan, Michael J., 2011. "Reinjection in geothermal fields: A review of worldwide experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 47-68, January.
    7. Slatlem Vik, Hedda & Salimzadeh, Saeed & Nick, Hamidreza M., 2018. "Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions," Renewable Energy, Elsevier, vol. 121(C), pages 606-622.
    8. Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Barends, Frans, 2014. "Experimental–numerical study of heat flow in deep low-enthalpy geothermal conditions," Renewable Energy, Elsevier, vol. 62(C), pages 716-730.
    9. Aly A. Hamouda & Omid Karoussi, 2008. "Effect of Temperature, Wettability and Relative Permeability on Oil Recovery from Oil-wet Chalk," Energies, MDPI, vol. 1(1), pages 1-16, July.
    10. Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Hicks, Michael A., 2015. "A prototype design model for deep low-enthalpy hydrothermal systems," Renewable Energy, Elsevier, vol. 77(C), pages 408-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    2. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    3. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    4. Fan, Huifang & Zhang, Luyi & Wang, Ruifei & Song, Hongqing & Xie, Hui & Du, Li & Sun, Pengguang, 2020. "Investigation on geothermal water reservoir development and utilization with variable temperature regulation: A case study of China," Applied Energy, Elsevier, vol. 275(C).
    5. Li, Sanbai & Feng, Xia-Ting & Zhang, Dongxiao & Tang, Huiying, 2019. "Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs," Applied Energy, Elsevier, vol. 247(C), pages 40-59.
    6. Chen, Jingping & Feng, Shaohang, 2020. "Evaluating a large geothermal absorber’s energy extraction and storage performance in a common geological condition," Applied Energy, Elsevier, vol. 279(C).
    7. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    8. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    9. Wang, Yang & Voskov, Denis & Khait, Mark & Saeid, Sanaz & Bruhn, David, 2021. "Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field," Renewable Energy, Elsevier, vol. 179(C), pages 641-651.
    10. Salimzadeh, S. & Grandahl, M. & Medetbekova, M. & Nick, H.M., 2019. "A novel radial jet drilling stimulation technique for enhancing heat recovery from fractured geothermal reservoirs," Renewable Energy, Elsevier, vol. 139(C), pages 395-409.
    11. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
    12. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    2. Babaei, Masoud & Nick, Hamidreza M., 2019. "Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Slatlem Vik, Hedda & Salimzadeh, Saeed & Nick, Hamidreza M., 2018. "Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions," Renewable Energy, Elsevier, vol. 121(C), pages 606-622.
    4. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    5. Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
    6. Salimzadeh, S. & Grandahl, M. & Medetbekova, M. & Nick, H.M., 2019. "A novel radial jet drilling stimulation technique for enhancing heat recovery from fractured geothermal reservoirs," Renewable Energy, Elsevier, vol. 139(C), pages 395-409.
    7. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    8. Saeed Mahmoodpour & Mrityunjay Singh & Ramin Mahyapour & Sri Kalyan Tangirala & Kristian Bär & Ingo Sass, 2022. "Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts," Energies, MDPI, vol. 15(24), pages 1-21, December.
    9. Santamarta, Juan C. & García-Gil, Alejandro & Expósito, María del Cristo & Casañas, Elías & Cruz-Pérez, Noelia & Rodríguez-Martín, Jesica & Mejías-Moreno, Miguel & Götzl, Gregor & Gemeni, Vasiliki, 2021. "The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands," Renewable Energy, Elsevier, vol. 171(C), pages 505-515.
    10. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    11. Willems, Cees J.L. & Nick, Hamidreza M. & Weltje, Gert Jan & Bruhn, David F., 2017. "An evaluation of interferences in heat production from low enthalpy geothermal doublets systems," Energy, Elsevier, vol. 135(C), pages 500-512.
    12. Xin-Yue Duan & Di Huang & Wen-Xian Lei & Shi-Chao Chen & Zhao-Qin Huang & Chuan-Yong Zhu, 2023. "Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model," Energies, MDPI, vol. 16(9), pages 1-19, April.
    13. Dai, Chuanshan & Li, Jiashu & Shi, Yu & Zeng, Long & Lei, Haiyan, 2019. "An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Liu, Guihong & Wang, Guiling & Zhao, Zhihong & Ma, Feng, 2020. "A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China," Renewable Energy, Elsevier, vol. 155(C), pages 484-499.
    15. Wang, Yang & Voskov, Denis & Khait, Mark & Saeid, Sanaz & Bruhn, David, 2021. "Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field," Renewable Energy, Elsevier, vol. 179(C), pages 641-651.
    16. Dongdong Liu & Yanyong Xiang, 2019. "A Semi-Analytical Method for Three-Dimensional Heat Transfer in Multi-Fracture Enhanced Geothermal Systems," Energies, MDPI, vol. 12(7), pages 1-11, March.
    17. Gascuel, Violaine & Rivard, Christine & Raymond, Jasmin, 2024. "Deep geothermal doublets versus deep borehole heat exchangers: A comparative study for cold sedimentary basins," Applied Energy, Elsevier, vol. 361(C).
    18. Liu, Guihong & Pu, Hai & Zhao, Zhihong & Liu, Yanguang, 2019. "Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs," Energy, Elsevier, vol. 171(C), pages 631-653.
    19. Reyhaneh Ghorbani Heidarabad & Kyuchul Shin, 2024. "Carbon Capture and Storage in Depleted Oil and Gas Reservoirs: The Viewpoint of Wellbore Injectivity," Energies, MDPI, vol. 17(5), pages 1-24, March.
    20. Chen, Cihai & Deng, Yaping & Ma, Haichun & Kang, Xueyuan & Ma, Lei & Qian, Jiazhong, 2024. "Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1433-1447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.