IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6021249.html
   My bibliography  Save this article

Towards Reduced-Order Models of Solid Oxide Fuel Cell

Author

Listed:
  • Maciej Ławryńczuk

Abstract

The objective of this work is to find precise reduced-order discrete-time models of a solid oxide fuel cell, which is a multiple-input multiple-output dynamic process. At first, the full-order discrete-time model is found from the continuous-time first-principle description. Next, the discrete-time submodels of hydrogen, oxygen, and water pressures (intermediate variables) are reduced. Two model reduction methods based on observability and controllability Grammians are compared: the state truncation method and reduction by residualisation. In all comparisons, the second method gives better results in terms of dynamic and steady-state errors as well as Nyquist plots. Next, the influence of the order of the pressure models on the errors of the process outputs (the voltage and the pressure difference) is studied. It is found that the number of pressure model parameters may be reduced from 25 to 19 without any deterioration of model accuracy. Two suboptimal reduced models are also discussed with only 14 and 11 pressure parameters, which give dynamic trajectories and steady-state characteristics that are very similar to those obtained from the full-order structure.

Suggested Citation

  • Maciej Ławryńczuk, 2018. "Towards Reduced-Order Models of Solid Oxide Fuel Cell," Complexity, Hindawi, vol. 2018, pages 1-18, July.
  • Handle: RePEc:hin:complx:6021249
    DOI: 10.1155/2018/6021249
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/6021249.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/6021249.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/6021249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pawan Singh & Baseem Khan, 2017. "Smart Microgrid Energy Management Using a Novel Artificial Shark Optimization," Complexity, Hindawi, vol. 2017, pages 1-22, October.
    2. Lei Wang & Ming Cai & Hu Zhang & Fuad Alsaadi & Liu Chen, 2017. "Active Fault-Tolerant Control for Wind Turbine with Simultaneous Actuator and Sensor Faults," Complexity, Hindawi, vol. 2017, pages 1-11, December.
    3. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
    4. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    5. Daniilidis, Alexandros & Scholten, Tjardo & Hooghiem, Joram & De Persis, Claudio & Herber, Rien, 2017. "Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks," Applied Energy, Elsevier, vol. 204(C), pages 254-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    2. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    3. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    4. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    5. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    6. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    7. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    8. Paola Costamagna & Simone Grosso & Rowland Travis & Loredana Magistri, 2015. "Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data," Energies, MDPI, vol. 8(11), pages 1-24, November.
    9. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    11. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    12. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    13. Anwar, Muhammad Bashar & Stephen, Gord & Dalvi, Sourabh & Frew, Bethany & Ericson, Sean & Brown, Maxwell & O’Malley, Mark, 2022. "Modeling investment decisions from heterogeneous firms under imperfect information and risk in wholesale electricity markets," Applied Energy, Elsevier, vol. 306(PA).
    14. Lin Sun & Suisui Chen & Jiucheng Xu & Yun Tian, 2019. "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation," Complexity, Hindawi, vol. 2019, pages 1-20, February.
    15. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    16. Chakrabarti, Mohammed Harun & Mjalli, Farouq Sabri & AlNashef, Inas Muen & Hashim, Mohd. Ali & Hussain, Mohd. Azlan & Bahadori, Laleh & Low, Chee Tong John, 2014. "Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 254-270.
    17. Laura Torralba-Díaz & Christoph Schimeczek & Matthias Reeg & Georgios Savvidis & Marc Deissenroth-Uhrig & Felix Guthoff & Benjamin Fleischer & Kai Hufendiek, 2020. "Identification of the Efficiency Gap by Coupling a Fundamental Electricity Market Model and an Agent-Based Simulation Model," Energies, MDPI, vol. 13(15), pages 1-19, July.
    18. Hong Liu & Zoheb Akhtar & Peiwen Li & Kai Wang, 2014. "Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells," Energies, MDPI, vol. 7(1), pages 1-18, January.
    19. Fan, Huifang & Zhang, Luyi & Wang, Ruifei & Song, Hongqing & Xie, Hui & Du, Li & Sun, Pengguang, 2020. "Investigation on geothermal water reservoir development and utilization with variable temperature regulation: A case study of China," Applied Energy, Elsevier, vol. 275(C).
    20. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6021249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.