IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp1079-1085.html
   My bibliography  Save this article

Ultrathin LiFePO4 nanosheets self-assembled with reduced graphene oxide applied in high rate lithium ion batteries for energy storage

Author

Listed:
  • Yang, WeiWei
  • Liu, JianGuo
  • Zhang, Xiang
  • Chen, Liang
  • Zhou, Yong
  • Zou, ZhiGang

Abstract

Liquid-phase ultrasonic exfoliation approach was applied to acquire ultrathin lithium iron (II) phosphate (LiFePO4) nanosheets (LFP-NS) with the thickness of only ∼15nm. The LFP-NS were then self-assembly with graphene oxide (GO) with amido bonds. Ultrashort diffusion pathways to lithium ions (Li+) could be achieved with high percentage of (010) facets exposed to LFP-NS, which reduced the diffusion distance for Li+ along the [010] direction effectively. In addition, the reduced graphene oxide (rGO) firmly adhered to the surface of LFP-NS by self-assemble method after sintering, which formed an excellent conductive network and facilitate electron transportation. The ultrathin diffusion channels into Li+ and tight conductive network resulting in an excellent high rate discharging performance, e.g. up to 102mAhg−1 at 30C, while discharge capacity retention can reach to 93.4% at 20C after 500 cycles. This kind of composite was an ideal cathode material used in high rate lithium ion batteries.

Suggested Citation

  • Yang, WeiWei & Liu, JianGuo & Zhang, Xiang & Chen, Liang & Zhou, Yong & Zou, ZhiGang, 2017. "Ultrathin LiFePO4 nanosheets self-assembled with reduced graphene oxide applied in high rate lithium ion batteries for energy storage," Applied Energy, Elsevier, vol. 195(C), pages 1079-1085.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:1079-1085
    DOI: 10.1016/j.apenergy.2016.06.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adams, Stefan, 2012. "Ultrafast lithium migration in surface modified LiFePO4 by heterogeneous doping," Applied Energy, Elsevier, vol. 90(1), pages 323-328.
    2. Changzheng Wu & Xiuli Lu & Lele Peng & Kun Xu & Xu Peng & Jianliu Huang & Guihua Yu & Yi Xie, 2013. "Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    3. Byoungwoo Kang & Gerbrand Ceder, 2009. "Battery materials for ultrafast charging and discharging," Nature, Nature, vol. 458(7235), pages 190-193, March.
    4. Zheng, Yuejiu & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Ma, Hongbin & Dollmeyer, Thomas A. & Freyermuth, Vincent, 2013. "Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model," Applied Energy, Elsevier, vol. 111(C), pages 571-580.
    5. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    6. Ramachandran, Rajendran & Saranya, Murugan & Velmurugan, Venugopal & Raghupathy, Bala P.C. & Jeong, Soon Kwan & Grace, Andrews Nirmala, 2015. "Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications," Applied Energy, Elsevier, vol. 153(C), pages 22-31.
    7. In Kyu Moon & Junghyun Lee & Rodney S. Ruoff & Hyoyoung Lee, 2010. "Reduced graphene oxide by chemical graphitization," Nature Communications, Nature, vol. 1(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salimi, Pejman & Norouzi, Omid & Pourhoseini, S.E.M. & Bartocci, Pietro & Tavasoli, Ahmad & Di Maria, Francesco & Pirbazari, S.M. & Bidini, Gianni & Fantozzi, Francesco, 2019. "Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries," Renewable Energy, Elsevier, vol. 140(C), pages 704-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    2. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    3. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    4. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    5. Bizhong Xia & Guanyong Zhang & Huiyuan Chen & Yuheng Li & Zhuojun Yu & Yunchao Chen, 2022. "Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-20, April.
    6. Alan Ransil & Angela M. Belcher, 2021. "Structural ceramic batteries using an earth-abundant inorganic waterglass binder," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Xiong, Dongbin & Li, Xifei & Shan, Hui & Yan, Bo & Li, Dejun & Langford, Craig & Sun, Xueliang, 2016. "Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices," Applied Energy, Elsevier, vol. 175(C), pages 512-521.
    8. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    10. Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
    11. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
    12. Jhu, Can-Yong & Wang, Yih-Wen & Wen, Chia-Yuan & Shu, Chi-Min, 2012. "Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology," Applied Energy, Elsevier, vol. 100(C), pages 127-131.
    13. Bruce Tonn & Paul Frymier & Jared Graves & Jessa Meyers, 2010. "A Sustainable Energy Scenario for the United States: Year 2050," Sustainability, MDPI, vol. 2(12), pages 1-31, November.
    14. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    15. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    17. Di Blasi, A. & Busaccaa, C. & Di Blasia, O. & Briguglioa, N. & Squadritoa, G. & Antonuccia, V., 2017. "Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application," Applied Energy, Elsevier, vol. 190(C), pages 165-171.
    18. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    19. Zhang, Haoran & Song, Xuan & Xia, Tianqi & Yuan, Meng & Fan, Zipei & Shibasaki, Ryosuke & Liang, Yongtu, 2018. "Battery electric vehicles in Japan: Human mobile behavior based adoption potential analysis and policy target response," Applied Energy, Elsevier, vol. 220(C), pages 527-535.
    20. Tanaka, T. & Ito, S. & Muramatsu, M. & Yamada, T. & Kamiko, H. & Kakimoto, N. & Inui, Y., 2015. "Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit," Applied Energy, Elsevier, vol. 143(C), pages 200-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:1079-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.