IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1138-1158.html
   My bibliography  Save this article

Statistical analysis for the characterization of solar energy utilization and inter-comparison of solar radiation at two sites in Cyprus

Author

Listed:
  • Pashiardis, S.
  • Kalogirou, S.A.
  • Pelengaris, A.

Abstract

A statistical analysis and inter-comparison of the solar radiation at two sites in Cyprus representing two different climate regimes of the island (Athalassa-inland plain vs Larnaca-coastal location) covering the period January 2013–December 2015 is presented. Mean annual and mean monthly daily totals of the global, horizontal beam and diffuse radiation and their frequency distribution at both sites are computed and discussed. The values of skewness and kurtosis coefficients are used to define the frequency distribution type of the above radiation parameters on a monthly basis. The statistical analysis is extended to the daily clearness index (KT), diffuse ratio (KD), and the ratio of horizontal beam to global radiation (KB,G). Furthermore, the influencing factors on the magnitude of the radiation components were examined. The value of KT was used to classify three different types of days such as clear, partially cloudy and cloudy days. Then, a statistical analysis of the solar radiation components was performed. On an average annual basis, more than 80% of the days are classified as either clear or partially cloudy at both stations. Additionally, the influence of the atmospheric absorption and scattering of the solar radiation under clear skies was examined on the basis of the Linke turbidity factor (TL). The results of this analysis are used to characterize and compare the radiation regimes of the two sites. Both sites have relatively high intensity of global and direct horizontal radiation. The annual average daily global radiation intensity is 18.5MJm−2 at Athalassa and 19.9MJm−2 at Larnaca. The horizontal beam radiation is 13.1MJm−2 for Athalassa and 14.2MJm−2 for Larnaca. Therefore, the fraction of the beam component of the global radiation is comparatively high at both sites, as indicated by the annual average daily fraction which is greater than 0.600. Generally, Larnaca has slightly higher rates of global radiation than Athalassa, as indicated by the average yearly cumulative global irradiation which is 6763MJm−2 for Athalassa and 7274MJm−2 for Larnaca.

Suggested Citation

  • Pashiardis, S. & Kalogirou, S.A. & Pelengaris, A., 2017. "Statistical analysis for the characterization of solar energy utilization and inter-comparison of solar radiation at two sites in Cyprus," Applied Energy, Elsevier, vol. 190(C), pages 1138-1158.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1138-1158
    DOI: 10.1016/j.apenergy.2017.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730020X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.
    2. Pashiardis, S. & Kalogirou, S.A., 2016. "Quality control of solar shortwave and terrestrial longwave radiation for surface radiation measurements at two sites in Cyprus," Renewable Energy, Elsevier, vol. 96(PA), pages 1015-1033.
    3. Jacovides, C.P. & Kaltsunides, N. & Hachioannou, L. & Stefanou, L., 1993. "An assessment of the solar radiation climate of the Cyprus environment," Renewable Energy, Elsevier, vol. 3(8), pages 913-918.
    4. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaba, Kazım & Sarıgül, Mehmet & Avcı, Mutlu & Kandırmaz, H. Mustafa, 2018. "Estimation of daily global solar radiation using deep learning model," Energy, Elsevier, vol. 162(C), pages 126-135.
    2. Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
    3. Battisti, Felipe G. & Delsoto, Giovanni S. & da Silva, Alexandre K., 2018. "Transient analysis and optimization of a recuperative sCO2 Brayton cycle assisted by heat and mass storage systems," Energy, Elsevier, vol. 150(C), pages 979-991.
    4. Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
    5. Wang, C. & Zhu, Y. & Qu, J. & Hu, H.D., 2018. "Automatic air temperature control in a container with an optic-variable wall," Applied Energy, Elsevier, vol. 224(C), pages 671-681.
    6. Yang Du & Ke Yan & Zixiao Ren & Weidong Xiao, 2018. "Designing Localized MPPT for PV Systems Using Fuzzy-Weighted Extreme Learning Machine," Energies, MDPI, vol. 11(10), pages 1-10, October.
    7. Garniwa, Pranda M.P. & Lee, Hyunjin, 2023. "Intercomparison of the parameterized Linke turbidity factor in deriving global horizontal irradiance," Renewable Energy, Elsevier, vol. 212(C), pages 285-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.
    2. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    3. Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K. & Fadhel, M.I., 2011. "Measurement of total and spectral solar irradiance: Overview of existing research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1403-1426, April.
    4. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    5. Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
    6. Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
    7. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    8. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    9. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    10. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    11. Utrillas, M.P. & Marín, M.J. & Esteve, A.R. & Salazar, G. & Suárez, H. & Gandía, S. & Martínez-Lozano, J.A., 2018. "Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina," Energy, Elsevier, vol. 162(C), pages 136-147.
    12. Farhadi, Rouhollah & Taki, Morteza, 2020. "The energy gain reduction due to shadow inside a flat-plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 730-740.
    13. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.
    14. Le Roux, W.G., 2016. "Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data," Renewable Energy, Elsevier, vol. 96(PA), pages 603-612.
    15. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    16. Torres, J.L. & De Blas, M. & García, A. & de Francisco, A., 2010. "Comparative study of various models in estimating hourly diffuse solar irradiance," Renewable Energy, Elsevier, vol. 35(6), pages 1325-1332.
    17. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    18. Lin, Chun-Tin & Chang, Keh-Chin & Chung, Kung-Ming, 2023. "Re-modeling the solar diffuse fraction in Taiwan on basis of a typical-meteorological-year data," Renewable Energy, Elsevier, vol. 204(C), pages 823-835.
    19. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    20. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1138-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.