IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap1015-1033.html
   My bibliography  Save this article

Quality control of solar shortwave and terrestrial longwave radiation for surface radiation measurements at two sites in Cyprus

Author

Listed:
  • Pashiardis, S.
  • Kalogirou, S.A.

Abstract

Routine measurements of irradiance are valuable for many research fields such as energy applications. However, ground data of solar global radiation can present questionable values. In this study, a set of check procedures is used to test the quality of shortwave and longwave radiation measurements taken at two actinometric stations in Cyprus (Athalassa-inland location and Larnaca-coastal location), during the period November 2012–July 2014. The testing procedures include physically possible limits for all the radiation components and comparisons between global radiation and the sum of direct and diffuse radiation. The quality process is implemented to both the 10-min averaged irradiances, hourly irradiation and the respective daily values. This paper reviews the currently available procedures for quality assessment of the solar shortwave and longwave irradiation data. In the present study, the first level of test includes physical possible limits which are determined by the Daylight Research Group and the Baseline Surface Radiation Network of the World Meteorological Organisation (WMO). The second level of test is a semi-automated procedure that is based on the creation of an envelope in the clearness index and the diffuse to global irradiance ratio. The third level of test is based on the comparison of various radiation parameters including comparison of measured extreme values with theoretical estimations from clear sky-models. The fourth level of test of the quality control procedure refers to the analysis of daily and annual variations of the radiation parameters.

Suggested Citation

  • Pashiardis, S. & Kalogirou, S.A., 2016. "Quality control of solar shortwave and terrestrial longwave radiation for surface radiation measurements at two sites in Cyprus," Renewable Energy, Elsevier, vol. 96(PA), pages 1015-1033.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:1015-1033
    DOI: 10.1016/j.renene.2016.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacovides, C.P. & Kaltsunides, N. & Hachioannou, L. & Stefanou, L., 1993. "An assessment of the solar radiation climate of the Cyprus environment," Renewable Energy, Elsevier, vol. 3(8), pages 913-918.
    2. Tapakis, R. & Charalambides, A.G., 2014. "Enhanced values of global irradiance due to the presence of clouds in Eastern Mediterranean," Renewable Energy, Elsevier, vol. 62(C), pages 459-467.
    3. Younes, S. & Claywell, R. & Muneer, T., 2005. "Quality control of solar radiation data: Present status and proposed new approaches," Energy, Elsevier, vol. 30(9), pages 1533-1549.
    4. Muneer, T. & Younes, S. & Munawwar, S., 2007. "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 551-602, May.
    5. Moradi, Isaac, 2009. "Quality control of global solar radiation using sunshine duration hours," Energy, Elsevier, vol. 34(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Every, Jeremy P. & Li, Li & Dorrell, David G., 2020. "Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations," Renewable Energy, Elsevier, vol. 147(P1), pages 2453-2469.
    2. Pashiardis, S. & Kalogirou, S.A. & Pelengaris, A., 2017. "Statistical analysis for the characterization of solar energy utilization and inter-comparison of solar radiation at two sites in Cyprus," Applied Energy, Elsevier, vol. 190(C), pages 1138-1158.
    3. Nollas, Fernando M. & Salazar, German A. & Gueymard, Christian A., 2023. "Quality control procedure for 1-minute pyranometric measurements of global and shadowband-based diffuse solar irradiance," Renewable Energy, Elsevier, vol. 202(C), pages 40-55.
    4. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno-Tejera, S. & Ramírez-Santigosa, L. & Silva-Pérez, M.A., 2015. "A proposed methodology for quick assessment of timestamp and quality control results of solar radiation data," Renewable Energy, Elsevier, vol. 78(C), pages 531-537.
    2. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    3. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.
    4. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.
    5. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    6. Younes, S. & Muneer, T., 2007. "Clear-sky classification procedures and models using a world-wide data-base," Applied Energy, Elsevier, vol. 84(6), pages 623-645, June.
    7. Nunez Munoz, Maria & Ballantyne, Erica E.F. & Stone, David A., 2022. "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, Elsevier, vol. 241(C).
    8. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    9. Vamvakas, Ioannis & Salamalikis, Vasileios & Kazantzidis, Andreas, 2020. "Evaluation of enhancement events of global horizontal irradiance due to clouds at Patras, South-West Greece," Renewable Energy, Elsevier, vol. 151(C), pages 764-771.
    10. Lam, Joseph C. & Wan, Kevin K.W. & Lau, Chris C.S. & Yang, Liu, 2008. "Climatic influences on solar modelling in China," Renewable Energy, Elsevier, vol. 33(7), pages 1591-1604.
    11. Blum, D.H. & Arendt, K. & Rivalin, L. & Piette, M.A. & Wetter, M. & Veje, C.T., 2019. "Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems," Applied Energy, Elsevier, vol. 236(C), pages 410-425.
    12. Tzoumanikas, P. & Nikitidou, E. & Bais, A.F. & Kazantzidis, A., 2016. "The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system," Renewable Energy, Elsevier, vol. 95(C), pages 314-322.
    13. Lou, Siwei & Li, Danny H.W. & Alshaibani, Khalid A. & Xing, Haowei & Li, Zhengrong & Huang, Yu & Xia, Dawei, 2022. "An all-sky luminance and radiance distribution model for built environment studies," Renewable Energy, Elsevier, vol. 190(C), pages 822-835.
    14. Petržala, J. & Kómar, L. & Kocifaj, M., 2017. "An advanced clear-sky model for more accurate irradiance and illuminance predictions for arbitrarily oriented inclined surfaces," Renewable Energy, Elsevier, vol. 106(C), pages 212-221.
    15. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
    16. Lee, Kwanho & Yoo, Hochun & Levermore, Geoff J., 2013. "Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea," Renewable Energy, Elsevier, vol. 57(C), pages 190-199.
    17. Al-Dousari, Ali & Al-Nassar, Waleed & Al-Hemoud, Ali & Alsaleh, Abeer & Ramadan, Ashraf & Al-Dousari, Noor & Ahmed, Modi, 2019. "Solar and wind energy: Challenges and solutions in desert regions," Energy, Elsevier, vol. 176(C), pages 184-194.
    18. Moradi, Isaac, 2009. "Quality control of global solar radiation using sunshine duration hours," Energy, Elsevier, vol. 34(1), pages 1-6.
    19. Jesús-Ignacio Prieto & David García & Ruth Santoro, 2022. "Comparative Analysis of Accuracy, Simplicity and Generality of Temperature-Based Global Solar Radiation Models: Application to the Solar Map of Asturias," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    20. Yin, Kaili & Zhang, Xiaojing & Xie, Jingchao & Hao, Ziyang & Xiao, Guofeng & Liu, Jiaping, 2023. "Modeling hourly solar diffuse fraction on a horizontal surface based on sky conditions clustering," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:1015-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.