IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v189y2017icp177-186.html
   My bibliography  Save this article

Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor

Author

Listed:
  • Habib, Mohamed A.
  • Rashwan, Sherif S.
  • Nemitallah, Medhat A.
  • Abdelhafez, Ahmed

Abstract

Oxy-fuel combustion provides a promising solution to the problem of excessive NOx emissions generated by air-based combustion systems; NOx is potentially eliminated in the absence of air-based nitrogen. However, severe temperatures are reached if fuel is burned in pure oxygen. Dilution by CO2 is thus implemented to control the flame temperature. The addition of CO2, however, was found to retard chemical-kinetics rates and negatively affect the laminar burning velocity and combustion efficiency. This study thus set out to examine oxy-fuel combustion and compare it to oxygen-enriched air-fuel combustion based on flame stability and appearance. Experiments were conducted on a swirl-stabilized model gas-turbine combustor to determine the ranges of stable operation of methane flames in different oxidizer environments, including CO2-diluted oxy-combustion and oxygen-enriched air-combustion. Based on that, two sets of experiments were conducted over ranges of oxidizer Reynolds number, equivalence ratio, and oxygen fraction in the oxidizer mixture. The first set of experiments considered CO2-diluted oxy-combustion, while the second set considered oxygen-enriched air-combustion. For both sets, the results showed that the stability map widens as the oxygen fraction is increased in the oxidizer mixture. This can be attributed to higher flame speeds, which assist flame stabilization under lean operation. For the same oxygen fraction and Reynolds number, the oxy-combustion flames were found to stabilize at higher equivalence ratios and fuel flow rates when compared to the oxygen-enriched air flames. This difference in flame stability magnifies at smaller oxygen fractions and gradually diminishes as the oxygen fraction is increased.

Suggested Citation

  • Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
  • Handle: RePEc:eee:appene:v:189:y:2017:i:c:p:177-186
    DOI: 10.1016/j.apenergy.2016.12.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916318293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aneke, Mathew & Wang, Meihong, 2015. "Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines," Applied Energy, Elsevier, vol. 154(C), pages 556-566.
    2. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    3. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    4. Granados, D.A. & Chejne, F. & Mejía, J.M., 2015. "Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns," Applied Energy, Elsevier, vol. 158(C), pages 107-117.
    5. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    6. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
    7. Nemitallah, Medhat A. & Habib, Mohamed A., 2013. "Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor," Applied Energy, Elsevier, vol. 111(C), pages 401-415.
    8. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    9. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    10. Nemitallah, Medhat A. & Habib, Mohamed A. & Mezghani, K., 2015. "Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor," Energy, Elsevier, vol. 84(C), pages 600-611.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
    2. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    3. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    4. Shakeel, Mohammad Raghib & Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2018. "Numerical modeling of oxy-methane combustion in a model gas turbine combustor," Applied Energy, Elsevier, vol. 228(C), pages 68-81.
    5. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    2. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    3. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    4. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    5. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    6. Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
    7. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    8. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    9. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    10. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
    11. Gao, Wei & Yan, Yunfei & Shen, Kaiming & Huang, Lujing & Zhao, Ting & Gao, Bo, 2022. "Combustion characteristic of premixed H2/air in the micro cavity combustor with guide vanes," Energy, Elsevier, vol. 239(PA).
    12. Nemitallah, Medhat & Alkhaldi, Shabeeb & Abdelhafez, Ahmed & Habib, Mohamed, 2018. "Effect analysis on the macrostructure and static stability limits of oxy-methane flames in a premixed swirl combustor," Energy, Elsevier, vol. 159(C), pages 86-96.
    13. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2020. "Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM," Energy, Elsevier, vol. 205(C).
    14. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    15. Guo, Junjun & Liu, Zhaohui & Hu, Fan & Li, Pengfei & Luo, Wei & Huang, Xiaohong, 2018. "A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler," Applied Energy, Elsevier, vol. 220(C), pages 59-69.
    16. Akhtar, Saad & Piffaretti, Stefano & Shamim, Tariq, 2018. "Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions," Applied Energy, Elsevier, vol. 228(C), pages 21-32.
    17. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Syngas Combustion in a Two-Pass Oxygen Transport Membrane Reactor for Fire Tube Boiler Application," Energies, MDPI, vol. 14(21), pages 1-15, November.
    18. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    20. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:189:y:2017:i:c:p:177-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.