IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp68-81.html
   My bibliography  Save this article

Numerical modeling of oxy-methane combustion in a model gas turbine combustor

Author

Listed:
  • Shakeel, Mohammad Raghib
  • Sanusi, Yinka S.
  • Mokheimer, Esmail M.A.

Abstract

There is a renewed interest in oxy-fuel combustion of natural gas for reduction of greenhouse gas emissions. This has necessitated various experimental and numerical studies of oxy-fuel combustion. In the numerical combustion study, the radiation model and combustion chemistry are critical for accurate numerical predictions of oxy-fuel combustion characteristics. In this study, three global reaction mechanisms: Westbrook-Dryer (3 equations), Jones-Lindstedt (5 equations) and Jones-Lindstedt (7 equations) for oxy-methane combustion were combined with different weighted sum of gray gas radiation models (WSGGM) available in the literature to determine the most accurate combination for oxy-methane combustion modeling and simulation. Experiments were conducted in a non-premixed swirl stabilized model gas turbine combustor at a firing rate of 4 MW/m3-bar while varying the percentage of CO2 in the oxidizer (O2/CO2) mixture. Numerical model developed using ANSYS FLUENT 17 code was validated against the experimental results. The combinations of Jones-Lindstedt (5 equations) reaction mechanism and WSGGM model proposed by Bordbar gave the closest approximation of the flame temperature with an average deviation of 5.52%. The model combination also predicted the flame attachment to the fuel nozzle and flame lift-off at a high CO2 percentage in the oxidizer mixture. The results of the parametric study on the effect of CO2 percentage in the oxidizer mixture, combustor energy level and equivalence ratio on the combustion characteristics and CO emissions were also reported. The CO emissions monotonically increases with increasing percentage of CO2 in the oxidizer due to decreased residence time and the reduction in the flame temperature. While the CO emission increases with the energy level in the combustor up to 3.5 MW/m3 and decreases thereafter. The optimum equivalence ratio for minimum CO emission is 0.98 with approximately 2 PPM at 40% CO2 in the oxidizer.

Suggested Citation

  • Shakeel, Mohammad Raghib & Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2018. "Numerical modeling of oxy-methane combustion in a model gas turbine combustor," Applied Energy, Elsevier, vol. 228(C), pages 68-81.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:68-81
    DOI: 10.1016/j.apenergy.2018.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
    2. Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
    3. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Flame fluctuations in Oxy-CO2-methane mixtures in swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 204(C), pages 303-317.
    4. Nemitallah, Medhat A. & Habib, Mohamed A., 2013. "Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor," Applied Energy, Elsevier, vol. 111(C), pages 401-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
    2. Fang, Juan & Liu, Qibin & Guo, Shaopeng & Lei, Jing & Jin, Hongguang, 2019. "Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage," Applied Energy, Elsevier, vol. 247(C), pages 116-126.
    3. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    4. Wang, Shuo & Xiao, Guoqing & Feng, Yu & Mi, Hongfu, 2023. "Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio," Energy, Elsevier, vol. 267(C).
    5. Lu, Jiajun & Yang, Shiliang & Wang, Hua, 2024. "Investigation of the oxygen-methane combustion and heating characteristics in industrial-scale copper anode refining furnace," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    2. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Ji, C.Z., 2018. "Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations," Applied Energy, Elsevier, vol. 222(C), pages 257-266.
    3. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    4. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Flame fluctuations in Oxy-CO2-methane mixtures in swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 204(C), pages 303-317.
    5. Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
    6. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    7. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    8. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
    9. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    10. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    11. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    12. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    13. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    14. Hidegh, Gyöngyvér & Csemány, Dávid & Vámos, János & Kavas, László & Józsa, Viktor, 2021. "Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels," Energy, Elsevier, vol. 234(C).
    15. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    16. Cheng, Jiaying & Liu, Bofan & Zhu, Tong, 2024. "Characterizing combustion instability in non-premixed methane combustion using internal flue gas recirculation," Applied Energy, Elsevier, vol. 370(C).
    17. Roy, Rishi & Gupta, Ashwani K., 2023. "Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane," Applied Energy, Elsevier, vol. 338(C).
    18. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    19. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    20. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:68-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.