IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7348-d672388.html
   My bibliography  Save this article

CFD Simulation of Syngas Combustion in a Two-Pass Oxygen Transport Membrane Reactor for Fire Tube Boiler Application

Author

Listed:
  • Te Zhao

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China)

  • Chusheng Chen

    (Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China)

  • Hong Ye

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China)

Abstract

The oxygen transport membrane reactor technology enables the stable combustion of syngas and reduction in NO x emission. Applying the syngas combustion membrane reactor to fire tube boiler can integrate oxygen separation, syngas combustion, and steam generation in a single apparatus. In this study, a CFD model for oxygen permeation and syngas combustion in a two-pass LSCoF-6428 tubular membrane reactor for fire tube boiler application was developed to study the effects of the inlet temperature, the sweep gas flow rate, and the syngas composition on the reactor performance. It is shown that the inlet temperature has a strong effect on the reactor performance. Increasing the inlet temperature can efficiently and significantly improve the oxygen permeability and the heat production capacity. A 34-times increase of oxygen permeation rate and a doubled thermal power output can be obtained when increasing the inlet temperature from 1073 to 1273 K. The membrane temperature, the oxygen permeation rate, and the thermal power output of the reactor all increase with the increase of sweep gas flow rate or H 2 /CO mass ratio in syngas. The feasibility of the syngas combustion membrane reactor for fire tube boiler application was elucidated.

Suggested Citation

  • Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Syngas Combustion in a Two-Pass Oxygen Transport Membrane Reactor for Fire Tube Boiler Application," Energies, MDPI, vol. 14(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7348-:d:672388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nemitallah, Medhat A. & Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Mansir, Ibrahim, 2017. "Hydrogen production, oxygen separation and syngas oxy-combustion inside a water splitting membrane reactor," Renewable Energy, Elsevier, vol. 113(C), pages 221-234.
    2. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    3. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    4. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    5. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor," Energies, MDPI, vol. 14(21), pages 1-17, November.
    2. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    3. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    4. Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
    5. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    6. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    7. Nemitallah, Medhat A. & Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Mansir, Ibrahim, 2017. "Hydrogen production, oxygen separation and syngas oxy-combustion inside a water splitting membrane reactor," Renewable Energy, Elsevier, vol. 113(C), pages 221-234.
    8. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    9. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    10. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    11. Mieszko Tokarski & Rafał Buczyński, 2023. "Heat Transfer Analysis for Combustion under Low-Gradient Conditions in a Small-Scale Industrial Energy Systems," Energies, MDPI, vol. 17(1), pages 1-18, December.
    12. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    14. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    15. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    16. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
    17. Lyu, Yajin & Xing, Chang & Liu, Li & Peng, Jiangbo & Shen, Wenkai & Yu, Xin & Qiu, Penghua, 2022. "Study of turbulent flame characteristics of water vapor diluted hydrogen-air micro-mixing combustion," Renewable Energy, Elsevier, vol. 189(C), pages 1194-1205.
    18. Dikhanbaev, Bayandy & Dikhanbaev, Arystan & Koshumbayev, Marat & Ybray, Sultan & Mergalimova, Almagul & Georgiev, Aleksandar, 2024. "On the issue of neutralizing carbon dioxide at processing coal in boilers of thermal power plants," Energy, Elsevier, vol. 295(C).
    19. Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
    20. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7348-:d:672388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.