IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp595-600.html
   My bibliography  Save this article

Electrochemical hythane production for renewable energy storage and biogas upgrading

Author

Listed:
  • Huang, Zhe
  • Lu, Lu
  • Jiang, Daqian
  • Xing, Defeng
  • Ren, Zhiyong Jason

Abstract

This study investigates the feasibility of using an electrochemical process to convert excess renewable electricity and biogas into hythane gas, which has higher value than biogas and can be stored and transported using current natural gas infrastructure. The electrochemical process utilizes the protons generated in water electrolysis to liberate cations in silicate minerals, which in turn forms metal hydroxide and efficiently captures the CO2 present in biogas. The H2 produced in electrolysis is blended with purified biogas to generate mixed hythane product, which has a higher combustion rate in methane fueled vehicles. Results show that under a voltage of 3.5–4.0V, the system reduced CO2 in biogas from the original 40% to less than 15% and increased the heat value of the gas product from 534kJ/mol to over 669kJ/mol. Preliminary techno-economic analysis showed a net profit of $0.28 per thousand ft.cu hythane generated when standard grid electricity is used, and the profit may be increased by orders of magnitude if excess renewable electricity is used. The process offers a new route for renewable energy storage and upgrade.

Suggested Citation

  • Huang, Zhe & Lu, Lu & Jiang, Daqian & Xing, Defeng & Ren, Zhiyong Jason, 2017. "Electrochemical hythane production for renewable energy storage and biogas upgrading," Applied Energy, Elsevier, vol. 187(C), pages 595-600.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:595-600
    DOI: 10.1016/j.apenergy.2016.11.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steen, Bengt & Borg, Gunnar, 2002. "An estimation of the cost of sustainable production of metal concentrates from the earth's crust," Ecological Economics, Elsevier, vol. 42(3), pages 401-413, September.
    2. Tobias S. Schmidt & Robin Born & Malte Schneider, 2012. "Assessing the costs of photovoltaic and wind power in six developing countries," Nature Climate Change, Nature, vol. 2(7), pages 548-553, July.
    3. Osorio, F. & Torres, J.C., 2009. "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production," Renewable Energy, Elsevier, vol. 34(10), pages 2164-2171.
    4. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    5. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    6. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Luo, Shuai & Jain, Akshay & Aguilera, Anibal & He, Zhen, 2017. "Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell," Applied Energy, Elsevier, vol. 206(C), pages 879-886.
    3. Cinti, G. & Bidini, G. & Hemmes, K., 2019. "Comparison of the solid oxide fuel cell system for micro CHP using natural gas with a system using a mixture of natural gas and hydrogen," Applied Energy, Elsevier, vol. 238(C), pages 69-77.
    4. Zeppilli, Marco & Cristiani, Lorenzo & Dell’Armi, Edoardo & Majone, Mauro, 2020. "Bioelectromethanogenesis reaction in a tubular Microbial Electrolysis Cell (MEC) for biogas upgrading," Renewable Energy, Elsevier, vol. 158(C), pages 23-31.
    5. Wang, Chao & Feng, Dong & Xia, Ao & Nizami, Abdul-Sattar & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Liao, Qiang & Murphy, Jerry D., 2024. "A comparative life cycle assessment of electro-anaerobic digestion to evaluate biomethane generation from organic solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    6. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    7. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    8. Zhou, Huihui & Xing, Defeng & Xu, Mingyi & Su, Yanyan & Zhang, Yifeng, 2020. "Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode," Applied Energy, Elsevier, vol. 269(C).
    9. Yang, Xiehe & Wang, Tiantian & Zhang, Yang & Zhang, Hai & Wu, Yuxin & Zhang, Jiansheng, 2022. "Hydrogen effect on flame extinction of hydrogen-enriched methane/air premixed flames: An assessment from the combustion safety point of view," Energy, Elsevier, vol. 239(PC).
    10. Bian, Bin & Shi, Le & Katuri, Krishna P. & Xu, Jiajie & Wang, Peng & Saikaly, Pascal E., 2020. "Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode," Applied Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
    2. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    3. Alessandro Rosini & Alessandro Palmieri & Damiano Lanzarotto & Renato Procopio & Andrea Bonfiglio, 2019. "A Model Predictive Control Design for Power Generation Heavy-Duty Gas Turbines," Energies, MDPI, vol. 12(11), pages 1-17, June.
    4. Zaman, Khalid & Abd-el Moemen, Mitwali, 2017. "The influence of electricity production, permanent cropland, high technology exports, and health expenditures on air pollution in Latin America and the Caribbean Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1004-1010.
    5. Manzano-Agugliaro, F. & Alcayde, A. & Montoya, F.G. & Zapata-Sierra, A. & Gil, C., 2013. "Scientific production of renewable energies worldwide: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 134-143.
    6. Li, Zeyun & Qadus, Abdul & Maneengam, Apichit & Mabrouk, Fatma & Shahid, Muhammad Sadiq & Timoshin, Anton, 2022. "Technological innovation, crude oil volatility, and renewable energy dimensions in N11 countries: Analysis based on advance panel estimation techniques," Renewable Energy, Elsevier, vol. 191(C), pages 204-212.
    7. Aleixandre-Tudó, José Luis & Castelló-Cogollos, Lourdes & Aleixandre, José Luis & Aleixandre-Benavent, Rafael, 2019. "Renewable energies: Worldwide trends in research, funding and international collaboration," Renewable Energy, Elsevier, vol. 139(C), pages 268-278.
    8. Rongrong Li & Min Su, 2017. "The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    9. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    10. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    11. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    13. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    15. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    18. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    19. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    20. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:595-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.