IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp204-212.html
   My bibliography  Save this article

Technological innovation, crude oil volatility, and renewable energy dimensions in N11 countries: Analysis based on advance panel estimation techniques

Author

Listed:
  • Li, Zeyun
  • Qadus, Abdul
  • Maneengam, Apichit
  • Mabrouk, Fatma
  • Shahid, Muhammad Sadiq
  • Timoshin, Anton

Abstract

Deterioration of natural environment is a serious threat to all the communities on earth. However, green and contemporary innovations reduce the adverse environmental outcomes generated through higher greenhouse gas emissions. Therefore, this study examines the role of technological innovationand renewable energy dimensions towards improving environmental quality. At the same time, the role of oil price volatilityis also observed during the study period from 1995 to 2018 for N11 countries with the help of advanced panel estimation. More specifically, this research applies second-generation panel cointegration technique along with continuously updated fully modified and continuously updated bias-corrected (Cup-BC) techniques. The results show that technological innovation and renewable energy dimensions like hydro and thermal power play a major role in reducing environmental threats. However, crude oil price volatility plays a major role in environmental deterioration. Besides, this research offers valuable recommendations for environmentalists.

Suggested Citation

  • Li, Zeyun & Qadus, Abdul & Maneengam, Apichit & Mabrouk, Fatma & Shahid, Muhammad Sadiq & Timoshin, Anton, 2022. "Technological innovation, crude oil volatility, and renewable energy dimensions in N11 countries: Analysis based on advance panel estimation techniques," Renewable Energy, Elsevier, vol. 191(C), pages 204-212.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:204-212
    DOI: 10.1016/j.renene.2022.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200475X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joakim Westerlund & David L. Edgerton, 2008. "A Simple Test for Cointegration in Dependent Panels with Structural Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 665-704, October.
    2. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    3. Sharif, Arshian & Baris-Tuzemen, Ozge & Uzuner, Gizem & Ozturk, Ilhan & Sinha, Avik, 2020. "Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach," MPRA Paper 100044, University Library of Munich, Germany.
    4. Westerlund, Joakim & Edgerton, David L., 2007. "A panel bootstrap cointegration test," Economics Letters, Elsevier, vol. 97(3), pages 185-190, December.
    5. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    6. Aviral Kumar TIWARI, 2011. "Energy Consumption, Co2 Emission and Economic Growth: A Revisit of the Evidence from India," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 11(2).
    7. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    8. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    9. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    10. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    11. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    12. Fisher-Vanden, Karen & Sue Wing, Ian, 2008. "Accounting for quality: Issues with modeling the impact of R&D on economic growth and carbon emissions in developing economies," Energy Economics, Elsevier, vol. 30(6), pages 2771-2784, November.
    13. Shahid Ali & Qingyou Yan & Muhammad Sajjad Hussain & Muhammad Irfan & Munir Ahmad & Asif Razzaq & Vishal Dagar & Cem Işık, 2021. "Evaluating Green Technology Strategies for the Sustainable Development of Solar Power Projects: Evidence from Pakistan," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    14. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    15. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    16. Sinha, Avik & Sengupta, Tuhin & Alvarado, Rafael, 2020. "Interplay between Technological Innovation and Environmental Quality: Formulating the SDG Policies for Next 11 Economies," MPRA Paper 104247, University Library of Munich, Germany, revised 2020.
    17. Elyas Abdulahi Mohamued & Masood Ahmed & Paula Pypłacz & Katarzyna Liczmańska-Kopcewicz & Muhammad Asif Khan, 2021. "Global Oil Price and Innovation for Sustainability: The Impact of R&D Spending, Oil Price and Oil Price Volatility on GHG Emissions," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Tiwari Aviral, 2011. "Primary Energy Consumption, CO2 Emissions and Economic Growth: Evidence from India," South East European Journal of Economics and Business, Sciendo, vol. 6(2), pages 99-117, November.
    19. Fang, Zhen & Razzaq, Asif & Mohsin, Muhammad & Irfan, Muhammad, 2022. "Spatial spillovers and threshold effects of internet development and entrepreneurship on green innovation efficiency in China," Technology in Society, Elsevier, vol. 68(C).
    20. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    21. He, Xiaojuan & Mishra, Shekhar & Aman, Ameenullah & Shahbaz, Muhammad & Razzaq, Asif & Sharif, Arshian, 2021. "The linkage between clean energy stocks and the fluctuations in oil price and financial stress in the US and Europe? Evidence from QARDL approach," Resources Policy, Elsevier, vol. 72(C).
    22. Rolf Larsson & Johan Lyhagen & Mickael Lothgren, 2001. "Likelihood-based cointegration tests in heterogeneous panels," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-41.
    23. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    24. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    25. Jiang, Chun & Zhang, Yadi & Kamran, Hafiz Waqas & Afshan, Sahar, 2021. "Understanding the dynamics of the resource curse and financial development in China? A novel evidence based on QARDL model," Resources Policy, Elsevier, vol. 72(C).
    26. Miao, Yang & Razzaq, Asif & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Do renewable energy consumption and financial globalisation contribute to ecological sustainability in newly industrialized countries?," Renewable Energy, Elsevier, vol. 187(C), pages 688-697.
    27. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
    28. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    29. Sun, Yunpeng & Bao, Qun & Siao-Yun, Wei & Islam, Misbah ul & Razzaq, Asif, 2022. "Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression," Renewable Energy, Elsevier, vol. 184(C), pages 1165-1176.
    30. Sun, Yunpeng & Anwar, Ahsan & Razzaq, Asif & Liang, Xueping & Siddique, Muhammad, 2022. "Asymmetric role of renewable energy, green innovation, and globalization in deriving environmental sustainability: Evidence from top-10 polluted countries," Renewable Energy, Elsevier, vol. 185(C), pages 280-290.
    31. Razzaq, Asif & Ajaz, Tahseen & Li, Jing Claire & Irfan, Muhammad & Suksatan, Wanich, 2021. "Investigating the asymmetric linkages between infrastructure development, green innovation, and consumption-based material footprint: Novel empirical estimations from highly resource-consuming economi," Resources Policy, Elsevier, vol. 74(C).
    32. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Feilan & Wong, Wing-Keung & Reivan Ortiz, Geovanny Genaro & Shraah, Ata Al & Mabrouk, Fatma & Li, Jianfeng & Li, Zeyun, 2023. "Economic analysis of sustainable exports value addition through natural resource management and artificial intelligence," Resources Policy, Elsevier, vol. 82(C).
    2. Masahina Sarabdeen & Manal Elhaj & Hind Alofaysan, 2024. "Exploring the Influence of Digital Transformation on Clean Energy Transition, Climate Change, and Economic Growth among Selected Oil-Export Countries through the Panel ARDL Approach," Energies, MDPI, vol. 17(2), pages 1-18, January.
    3. Saud, Shah & Haseeb, Abdul & Zafar, Muhammad Wasif & Li, Huiyun, 2023. "Articulating natural resource abundance, economic complexity, education and environmental sustainability in MENA countries: Evidence from advanced panel estimation," Resources Policy, Elsevier, vol. 80(C).
    4. Salisu, Afees A. & Isah, Kazeem & Oloko, Tirimisiyu O., 2024. "Technology shocks and crude oil market connection: The role of climate change," Energy Economics, Elsevier, vol. 130(C).
    5. Zhang, Dongyang & Bai, Dingchuan & Chen, Xingyu, 2024. "Can crude oil futures market volatility motivate peer firms in competing ESG performance? An exploration of Shanghai International Energy Exchange," Energy Economics, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yunpeng & Li, Haoning & Andlib, Zubaria & Genie, Mesfin G., 2022. "How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques," Renewable Energy, Elsevier, vol. 185(C), pages 996-1005.
    2. Shidong, Li & Chupradit, Supat & Maneengam, Apichit & Suksatan, Wanich & Phan The, Cong & Nguyen Ngoc, Quynh, 2022. "The moderating role of human capital and renewable energy in promoting economic development in G10 economies: Evidence from CUP-FM and CUP-BC methods," Renewable Energy, Elsevier, vol. 189(C), pages 180-187.
    3. Wu Xiaoman & Abdul Majeed & Dinara G. Vasbieva & Claire Emilienne Wati Yameogo & Nazim Hussain, 2021. "Natural resources abundance, economic globalization, and carbon emissions: Advancing sustainable development agenda," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 1037-1048, September.
    4. Xu, Haitao & Yang, Chengying & Li, Xuetao & Liu, Ruiyu & Zhang, Yonghong, 2024. "How do fintech, digitalization, green technologies influence sustainable environment in CIVETS nations? An evidence from CUP FM and CUP BC approaches," Resources Policy, Elsevier, vol. 92(C).
    5. Mehmood, Usman, 2021. "Contribution of renewable energy towards environmental quality: The role of education to achieve sustainable development goals in G11 countries," Renewable Energy, Elsevier, vol. 178(C), pages 600-607.
    6. Chen, Jie & Huang, Shoujun & Ajaz, Tahseen, 2022. "Natural resources management and technological innovation under EKC framework: A glimmer of hope for sustainable environment in newly industrialized countries," Resources Policy, Elsevier, vol. 79(C).
    7. Du, Ling & Jiang, Hua & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji & Razzaq, Asif, 2022. "Asymmetric effects of high-tech industry and renewable energy on consumption-based carbon emissions in MINT countries," Renewable Energy, Elsevier, vol. 196(C), pages 1269-1280.
    8. Sinha, Avik & Sengupta, Tuhin & Saha, Tanaya, 2020. "Technology policy and environmental quality at crossroads: Designing SDG policies for select Asia Pacific countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    9. Tiwari, Aviral Kumar & Eapen, Leena Mary & Nair, Sthanu R, 2021. "Electricity consumption and economic growth at the state and sectoral level in India: Evidence using heterogeneous panel data methods," Energy Economics, Elsevier, vol. 94(C).
    10. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    11. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Sinha, Avik & Sengupta, Tuhin & Qin, Quande, 2020. "How Renewable Energy Consumption Contribute to Environmental Quality? The Role of Education in OECD Countries," MPRA Paper 100259, University Library of Munich, Germany, revised 08 May 2020.
    12. Sevgi SEZER, 2017. "The effects of real exchange rates and income on the trade balance: A second generation panel data analysis for transition economies and Turkey," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(611), S), pages 171-186, Summer.
    13. Lei, Lei & Ozturk, Ilhan & Murshed, Muntasir & Abrorov, Sirojiddin & Alvarado, Rafael & Mahmood, Haider, 2023. "Environmental innovations, energy innovations, governance, and environmental sustainability: Evidence from South and Southeast Asian countries," Resources Policy, Elsevier, vol. 82(C).
    14. Badeeb, Ramez Abubakr & Wang, Bo & Zhao, Jun & Khan, Zeeshan & Uktamov, Khusniddin Fakhriddinovich & Zhang, Changyong, 2023. "Natural resources extraction and financial inclusion: Linear and non-linear effect of natural resources on financial sector," Resources Policy, Elsevier, vol. 85(PA).
    15. Chen, Fu & Wang, Liyun & Gu, Qiaojing & Wang, Mingyue & Ding, Xuanwen, 2022. "Nexus between natural resources, financial development, green innovation and environmental sustainability in China: Fresh insight from novel quantile ARDL," Resources Policy, Elsevier, vol. 79(C).
    16. Zhang, Ren Jie & Razzaq, Asif, 2022. "Influence of economic policy uncertainty and financial development on renewable energy consumption in the BRICST region," Renewable Energy, Elsevier, vol. 201(P1), pages 526-533.
    17. Xie, Mingting & Irfan, Muhammad & Razzaq, Asif & Dagar, Vishal, 2022. "Forest and mineral volatility and economic performance: Evidence from frequency domain causality approach for global data," Resources Policy, Elsevier, vol. 76(C).
    18. Meng, Yue & Wu, Haoyue & Wang, Yunchen & Duan, Yinying, 2022. "International trade diversification, green innovation, and consumption-based carbon emissions: The role of renewable energy for sustainable development in BRICST countries," Renewable Energy, Elsevier, vol. 198(C), pages 1243-1253.
    19. Wang, Zhuo & Yen-Ku, Kuo & Li, Zeyun & An, Nguyen Binh & Abdul-Samad, Zulkiflee, 2022. "The transition of renewable energy and ecological sustainability through environmental policy stringency: Estimations from advance panel estimators," Renewable Energy, Elsevier, vol. 188(C), pages 70-80.
    20. Sun, Yunpeng & Anwar, Ahsan & Razzaq, Asif & Liang, Xueping & Siddique, Muhammad, 2022. "Asymmetric role of renewable energy, green innovation, and globalization in deriving environmental sustainability: Evidence from top-10 polluted countries," Renewable Energy, Elsevier, vol. 185(C), pages 280-290.

    More about this item

    Keywords

    Technological innovation; Carbon emission; Oil volatility; Renewable energy; N11;
    All these keywords.

    JEL classification:

    • N11 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - U.S.; Canada: Pre-1913

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:204-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.