IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309491.html
   My bibliography  Save this article

The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment

Author

Listed:
  • Li, Qiyuan
  • Omar, Amr
  • Cha-Umpong, Withita
  • Liu, Qian
  • Li, Xiaopeng
  • Wen, Jianping
  • Wang, Yinfeng
  • Razmjou, Amir
  • Guan, Jing
  • Taylor, Robert A.

Abstract

Vacuum membrane distillation can extract pure water from degraded sources, but it requires relatively high energy inputs as compared to other thermal-driven technologies. As a commercially successful example, Memsys Water Technologies GmbH has addressed this key limitation by developing a flat sheet-based vacuum membrane distillation module where the latent heat recycled internally by using multiple distillation effects. In this paper, we propose an alternative hollow fiber-based design which also recycles the latent heat with multiple effects, but with an even more compact membrane packing format. The proposed design uses 3-dimensional printing to ‘unlock’ this configuration via a hollow aluminium alloy baffle which relies on its low thermal resistance to recover the latent heat effectively. The printed metal baffle (0.8 mm wall thickness) was calculated to have a very high conductive heat transfer coefficient, ~180 kW/m2K (surpassing even the ~20 μm polypropylene foil used in the Memsys module, which has a conductance of ~10 kW/m2K). Our experimental and theoretical results indicate that this design uses a condensation-convection-distillation heat and mass transfer mechanism which enables a three-effect system to reduce the energy consumption by ~60% over a single-effect design (i.e. from 672 kWh/m3 to 263 kWh/m3) for synthetic geothermal brine (~200 g/L salt concentration). Furthermore, the prototype reached a high average permeate flux of ~5.1 LMH and a salt rejection rate of >99.99%, approaching zero liquid discharge. Overall, this work suggests that hollow fiber membranes can indeed be used in a multi-effect mode and represents a promising new pathway for membrane distillation.

Suggested Citation

  • Li, Qiyuan & Omar, Amr & Cha-Umpong, Withita & Liu, Qian & Li, Xiaopeng & Wen, Jianping & Wang, Yinfeng & Razmjou, Amir & Guan, Jing & Taylor, Robert A., 2020. "The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309491
    DOI: 10.1016/j.apenergy.2020.115437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
    2. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    3. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    4. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    5. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    2. Elminshawy, Nabil A.S. & Gadalla, Mamdouh A. & Bassyouni, M. & El-Nahhas, Kamal & Elminshawy, Ahmed & Elhenawy, Y., 2020. "A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water," Renewable Energy, Elsevier, vol. 162(C), pages 802-817.
    3. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Praveen Kumar, G. & Ayou, Dereje S. & Narendran, C. & Saravanan, R. & Maiya, M.P. & Coronas, Alberto, 2023. "Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities," Energy, Elsevier, vol. 262(PA).
    5. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Inkawhich, Mikah & Shingler, Jeb & Ketchum, Remington S. & Pan, Wei & Norwood, Robert A. & Hickenbottom, Kerri L., 2023. "Temporal performance indicators for an integrated pilot-scale membrane distillation-concentrated solar power/photovoltaic system," Applied Energy, Elsevier, vol. 349(C).
    7. Tan, Yong Zen & Han, Le & Chew, Nick Guan Pin & Chow, Wai Hoong & Wang, Rong & Chew, Jia Wei, 2018. "Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling," Applied Energy, Elsevier, vol. 231(C), pages 1079-1088.
    8. Qasem, Naef A.A. & Lawal, Dahiru U. & Aljundi, Isam H. & Abdallah, Ayman M. & Panchal, Hitesh, 2022. "Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system," Applied Energy, Elsevier, vol. 323(C).
    9. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    10. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    11. Liu, Yilin & Cui, Xin & Yan, Weichao & Wang, Jiawei & Su, Jincai & Jin, Liwen, 2022. "A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation," Applied Energy, Elsevier, vol. 326(C).
    12. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    13. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    14. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    15. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    16. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization," Energy, Elsevier, vol. 148(C), pages 1060-1068.
    17. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Muhammad Bin Nisar & Syyed Adnan Raheel Shah & Muhammad Owais Tariq & Muhammad Waseem, 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    19. Damian Amiruddin & Devinder Mahajan & Dufei Fang & Wenbin Wang & Peng Wang & Benjamin S. Hsiao, 2023. "A Facile Ultrapure Water Production Method for Electrolysis via Multilayered Photovoltaic/Membrane Distillation," Energies, MDPI, vol. 16(15), pages 1-17, August.
    20. Adnan Alhathal Alanezi & Mohammad Reza Safaei & Marjan Goodarzi & Yasser Elhenawy, 2020. "The Effect of Inclination Angle and Reynolds Number on the Performance of a Direct Contact Membrane Distillation (DCMD) Process," Energies, MDPI, vol. 13(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.