Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.05.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
- Giglio, Andrea & Lanzini, Andrea & Leone, Pierluigi & Rodríguez García, Margarita M. & Zarza Moya, Eduardo, 2017. "Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 453-473.
- Mwesigye, Aggrey & Huan, Zhongjie & Meyer, Josua P., 2015. "Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid," Applied Energy, Elsevier, vol. 156(C), pages 398-412.
- Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
- Cheng, Z.D. & He, Y.L. & Cui, F.Q., 2013. "A new modelling method and unified code with MCRT for concentrating solar collectors and its applications," Applied Energy, Elsevier, vol. 101(C), pages 686-698.
- Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
- Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
- Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
- Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
- Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
- Sandeep, H.M. & Arunachala, U.C., 2017. "Solar parabolic trough collectors: A review on heat transfer augmentation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1218-1231.
- Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
- Roldán, M.I. & Valenzuela, L. & Zarza, E., 2013. "Thermal analysis of solar receiver pipes with superheated steam," Applied Energy, Elsevier, vol. 103(C), pages 73-84.
- Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
- Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
- Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
- Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
- Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
- Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
- Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
- Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
- Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
- Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
- Arancibia-Bulnes, Camilo A. & Peña-Cruz, Manuel I. & Mutuberría, Amaia & Díaz-Uribe, Rufino & Sánchez-González, Marcelino, 2017. "A survey of methods for the evaluation of reflective solar concentrator optics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 673-684.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
- Cheng, Ze-Dong & He, Ya-Ling & Du, Bao-Cun & Wang, Kun & Liang, Qi, 2015. "Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 148(C), pages 282-293.
- Siddhartha, & Sharma, Naveen & Varun,, 2012. "A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater," Energy, Elsevier, vol. 38(1), pages 406-413.
- Meiser, S. & Schneider, S. & Lüpfert, E. & Schiricke, B. & Pitz-Paal, R., 2017. "Evaluation and assessment of gravity load on mirror shape and focusing quality of parabolic trough solar mirrors using finite-element analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1210-1216.
- Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
- Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
- Tagle-Salazar, Pablo D. & Nigam, K.D.P. & Rivera-Solorio, Carlos I., 2018. "Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids," Renewable Energy, Elsevier, vol. 125(C), pages 334-343.
- Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
- Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
- Wu, Shaobing & Wang, Changmei & Tang, Runsheng, 2022. "Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning," Renewable Energy, Elsevier, vol. 188(C), pages 437-449.
- Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
- Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
- Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
- Cheng, Ze-Dong & He, Ya-Ling & Du, Bao-Cun & Wang, Kun & Liang, Qi, 2015. "Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 148(C), pages 282-293.
- Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
- Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
- Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
- Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
- Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.
- Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
- Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
- Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
- Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
- Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
- Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
- Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
- Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
- de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
More about this item
Keywords
Parabolic trough solar collector; Optical efficiency; Fitting formula; Monte Carlo ray-tracing; Particle swarm optimization algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:682-697. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.