IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6538-d909079.html
   My bibliography  Save this article

Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions

Author

Listed:
  • Talha Batuhan Korkut

    (Innovative Technologies Laboratory, University of Picardie Jules Verne, 80000 Amiens, France
    Automatic Control and Robotics Labs, Dokuz Eylul University, Izmir 35390, Turkey)

  • Aytaç Gören

    (Automatic Control and Robotics Labs, Dokuz Eylul University, Izmir 35390, Turkey)

  • Ahmed Rachid

    (Innovative Technologies Laboratory, University of Picardie Jules Verne, 80000 Amiens, France)

Abstract

Worldwide need for renewable energy sources increases significantly with the drastic negative greenhouse effects of climate change. This study considers a water-cooled hybrid thermo-electric panel (PV/T) which contributes to better harvesting of solar energy. A numerical CFD model was developed for power generation of a standard PV panel as well as for a water-based PV/T system laminated with polymer matrix composite (PMC) materials, and user-defined functions (UDFs) were developed and integrated with the CFD model to implement exact boundary conditions. Experimentation under daily weather conditions was carried out in order to validate the numerical CFD model by measuring the surface temperatures of PV and PV/T systems as well as the temperatures of the water inlet and outlet of the cooling system. The results show that the maximum and minimum deviations of the surface temperature between numerical and experimental studies matched well compared with the studies performed in the literature. Moreover, the numerical model had a rapid response to temperature changes of PV and PV/T modules under sudden weather changes (cloudy/sunny). It was shown that the electrical efficiency of the cooled PV/T module can achieve 20.8% in addition to a thermal efficiency of 53.5%. The current study is a validation of the performance of polymer composite laminated water-cooled PV/T systems under daily weather conditions.

Suggested Citation

  • Talha Batuhan Korkut & Aytaç Gören & Ahmed Rachid, 2022. "Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions," Energies, MDPI, vol. 15(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6538-:d:909079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    2. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    3. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    4. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    3. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    4. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Asier Sanz & Antonio J. Martín & Ainhoa Pereda & Eduardo Román & Pedro Ibañez & Raquel Fuente, 2022. "A Solar Dually PVT Driven Direct Expansion Heat Pump One-Year Field Operation Results at Continental Climate," Energies, MDPI, vol. 15(9), pages 1-23, April.
    7. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    8. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    9. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    11. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    12. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    13. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Taher Maatallah & Ahlem Houcine & Farooq Saeed & Sikandar Khan & Sajid Ali, 2024. "Simulated Performance Analysis of a Hybrid Water-Cooled Photovoltaic/Parabolic Dish Concentrator Coupled with Conical Cavity Receiver," Sustainability, MDPI, vol. 16(2), pages 1-25, January.
    15. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    16. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    18. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    19. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    20. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6538-:d:909079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.