IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v171y2016icp231-242.html
   My bibliography  Save this article

Understanding usage patterns of electric kettle and energy saving potential

Author

Listed:
  • Murray, D.M.
  • Liao, J.
  • Stankovic, L.
  • Stankovic, V.

Abstract

The availability of smart metering and smart appliances enables detecting and characterising appliance use in a household, quantifying energy savings through efficient appliance use and predicting appliance-specific demand from load measurements is possible. With growing electric kettle ownership and usage, lack of any efficiency labelling guidelines for the kettle, slow technological progress in improving kettle efficiency relative to other domestic appliances, and current consumer attitudes, urgent investigation into consumer kettle usage patterns is warranted. From an efficiency point of view, little can be done about the kettle, which is more efficient than other methods of heating water such as the stove top kettle. However, since a majority households use the kettle inefficiently by overfilling, in order to meet energy targets, it is imperative to quantify inefficient usage and predict demand. For the purposes of scalability, we propose tools that depend only on load measurement data for quantifying and visualising kettle usage and energy consumption, assessing energy wastage through overfilling via our proposed electric kettle model, and predicting kettle-specific demand, from which we can estimate potential energy savings in a household and across a housing stock. This is demonstrated using data from a longitudinal study across a sample of 14 UK households for a two-year period.1The open-access REFIT Electrical Load Measurements dataset of the 14 UK households used in this study can be accessed via DOI 10.15129/31da3ece-f902-4e95-a093-e0a9536983c4.1

Suggested Citation

  • Murray, D.M. & Liao, J. & Stankovic, L. & Stankovic, V., 2016. "Understanding usage patterns of electric kettle and energy saving potential," Applied Energy, Elsevier, vol. 171(C), pages 231-242.
  • Handle: RePEc:eee:appene:v:171:y:2016:i:c:p:231-242
    DOI: 10.1016/j.apenergy.2016.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916303579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
    2. Arghira, Nicoleta & Hawarah, Lamis & Ploix, Stéphane & Jacomino, Mireille, 2012. "Prediction of appliances energy use in smart homes," Energy, Elsevier, vol. 48(1), pages 128-134.
    3. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    4. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    5. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    6. Good, Nicholas & Zhang, Lingxi & Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2015. "High resolution modelling of multi-energy domestic demand profiles," Applied Energy, Elsevier, vol. 137(C), pages 193-210.
    7. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    8. El-Baz, Wessam & Tzscheutschler, Peter, 2015. "Short-term smart learning electrical load prediction algorithm for home energy management systems," Applied Energy, Elsevier, vol. 147(C), pages 10-19.
    9. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    10. Kilpatrick, R.A.R. & Banfill, P.F.G. & Jenkins, D.P., 2011. "Methodology for characterising domestic electrical demand by usage categories," Applied Energy, Elsevier, vol. 88(3), pages 612-621, March.
    11. Drysdale, Brian & Wu, Jianzhong & Jenkins, Nick, 2015. "Flexible demand in the GB domestic electricity sector in 2030," Applied Energy, Elsevier, vol. 139(C), pages 281-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chao & Akintayo, Adedotun & Jiang, Zhanhong & Henze, Gregor P. & Sarkar, Soumik, 2018. "Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network," Applied Energy, Elsevier, vol. 211(C), pages 1106-1122.
    2. Yilmaz, S. & Majcen, D. & Heidari, M. & Mahmoodi, J. & Brosch, T. & Patel, M.K., 2019. "Analysis of the impact of energy efficiency labelling and potential changes on electricity demand reduction of white goods using a stock model: The case of Switzerland," Applied Energy, Elsevier, vol. 239(C), pages 117-132.
    3. Sonia Sandez & Valeria Ibáñez‐Forés & Victoria Pérez‐Belis & Pablo Juan & María D. Bovea, 2023. "Consumer practices regarding the purchase, use, willingness to repair, and disposal of small electric and electronic equipment: A Spanish survey on kettles," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1613-1625, December.
    4. Du, Feng & Yue, Hong & Zhang, Jiangfeng, 2023. "Influence of advertisement control to residential energy savings in large networks," Applied Energy, Elsevier, vol. 333(C).
    5. Antoine Durand & Simon Hirzel & Clemens Rohde & Marcel Gebele & Carlos Lopes & Emma Olsson & Robin Barkhausen, 2022. "Electric Kettles: An Assessment of Energy-Saving Potentials for Policy Making in the European Union," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    6. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    7. Zhao, Bochao & Ye, Minxiang & Stankovic, Lina & Stankovic, Vladimir, 2020. "Non-intrusive load disaggregation solutions for very low-rate smart meter data," Applied Energy, Elsevier, vol. 268(C).
    8. Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
    9. Du, Feng & Zhang, Jiangfeng & Li, Hailong & Yan, Jinyue & Galloway, Stuart & Lo, Kwok L., 2016. "Modelling the impact of social network on energy savings," Applied Energy, Elsevier, vol. 178(C), pages 56-65.
    10. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    11. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    12. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    13. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
    14. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jack, M.W. & Suomalainen, K. & Dew, J.J.W. & Eyers, D., 2018. "A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control," Applied Energy, Elsevier, vol. 211(C), pages 104-112.
    2. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    3. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    4. Angreine Kewo & Pinrolinvic D. K. Manembu & Per Sieverts Nielsen, 2020. "Synthesising Residential Electricity Load Profiles at the City Level Using a Weighted Proportion (Wepro) Model," Energies, MDPI, vol. 13(14), pages 1-28, July.
    5. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    6. Ebrahimzadeh Sarvestani, Maryam & Hoseiny, Saeed & Tavana, Davood & Di Maria, Francesco, 2024. "Strategic management of energy consumption and reduction of specific energy consumption using modern methods of artificial intelligence in an industrial plant," Energy, Elsevier, vol. 286(C).
    7. Muhammad Sohail Khan & Muhamad Faisal Abrar & Dohyeun Kim & Faiza Tila & Iftikhar Ahmed Khan & Junaid Shuja & Abdul Nasir Khan, 2020. "Resource-based direct manipulation: a user-centric visual interface for operational customization of future smart appliances," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 75(3), pages 291-306, November.
    8. Blonsky, Michael & Maguire, Jeff & McKenna, Killian & Cutler, Dylan & Balamurugan, Sivasathya Pradha & Jin, Xin, 2021. "OCHRE: The Object-oriented, Controllable, High-resolution Residential Energy Model for Dynamic Integration Studies," Applied Energy, Elsevier, vol. 290(C).
    9. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    10. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.
    12. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
    13. Mattia De Rosa & Marcus Brennenstuhl & Carlos Andrade Cabrera & Ursula Eicker & Donal P. Finn, 2019. "An Iterative Methodology for Model Complexity Reduction in Residential Building Simulation," Energies, MDPI, vol. 12(12), pages 1-20, June.
    14. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    15. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    16. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    17. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    18. Curtis, John & Brazil, William & Harold, Jason, 2019. "Understanding preference heterogeneity in electricity services: the case of domestic appliance curtailment contracts," Papers WP638, Economic and Social Research Institute (ESRI).
    19. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    20. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:231-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.