IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp117-132.html
   My bibliography  Save this article

Analysis of the impact of energy efficiency labelling and potential changes on electricity demand reduction of white goods using a stock model: The case of Switzerland

Author

Listed:
  • Yilmaz, S.
  • Majcen, D.
  • Heidari, M.
  • Mahmoodi, J.
  • Brosch, T.
  • Patel, M.K.

Abstract

This paper presents the development and application of a dynamic model which allows to quantify the changes in the number of white goods in stock, the related evolution of energy efficiency as well as the changes/projections of electricity consumption in the next 20 years using data from Switzerland. According to the “reference scenario” based on observed market trends the electricity demand of white goods is expected to decrease by 8% between 2015 and 2035. The analysis shows that this is the combined result of having more energy efficient appliances in the stock, a higher appliance ownership level, and an increased number of dwellings. The “maximum efficiency” scenario based on new technologies shows an electricity saving potential of white goods of 25%. These findings confirm that energy efficiency standards and labelling can be effective instruments for achieving energy and CO2 emissions reduction targets. The assessment for cost effectiveness indicates the current limited scope for economically viable energy efficiency improvements of white goods, while novel technological solutions are likely to expand the economic energy efficiency potential. Since white goods and their components are mass-produced and traded internationally, similar findings can be expected for other countries with comparable legislation (e.g. EU member states) but country-specific analyses are nevertheless recommended.

Suggested Citation

  • Yilmaz, S. & Majcen, D. & Heidari, M. & Mahmoodi, J. & Brosch, T. & Patel, M.K., 2019. "Analysis of the impact of energy efficiency labelling and potential changes on electricity demand reduction of white goods using a stock model: The case of Switzerland," Applied Energy, Elsevier, vol. 239(C), pages 117-132.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:117-132
    DOI: 10.1016/j.apenergy.2019.01.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930203X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerke, Brian F. & McNeil, Michael A. & Tu, Thomas, 2017. "The International Database of Efficient Appliances (IDEA): A new tool to support appliance energy-efficiency deployment," Applied Energy, Elsevier, vol. 205(C), pages 453-464.
    2. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
    3. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    4. Halvorsen, Bente & Larsen, Bodil M., 2001. "Norwegian residential electricity demand--a microeconomic assessment of the growth from 1976 to 1993," Energy Policy, Elsevier, vol. 29(3), pages 227-236, February.
    5. Bartusch, Cajsa & Odlare, Monica & Wallin, Fredrik & Wester, Lars, 2012. "Exploring variance in residential electricity consumption: Household features and building properties," Applied Energy, Elsevier, vol. 92(C), pages 637-643.
    6. Mansouri, Iman & Newborough, Marcus & Probert, Douglas, 1996. "Energy consumption in UK households: Impact of domestic electrical appliances," Applied Energy, Elsevier, vol. 54(3), pages 211-285, July.
    7. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    8. Murray, D.M. & Liao, J. & Stankovic, L. & Stankovic, V., 2016. "Understanding usage patterns of electric kettle and energy saving potential," Applied Energy, Elsevier, vol. 171(C), pages 231-242.
    9. Kilpatrick, R.A.R. & Banfill, P.F.G. & Jenkins, D.P., 2011. "Methodology for characterising domestic electrical demand by usage categories," Applied Energy, Elsevier, vol. 88(3), pages 612-621, March.
    10. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    11. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    12. Andersen, F.M. & Larsen, H.V. & Juul, N. & Gaardestrup, R.B., 2014. "Differentiated long term projections of the hourly electricity consumption in local areas. The case of Denmark West," Applied Energy, Elsevier, vol. 135(C), pages 523-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilmaz, S. & Rinaldi, A. & Patel, M.K., 2020. "DSM interactions: What is the impact of appliance energy efficiency measures on the demand response (peak load management)?," Energy Policy, Elsevier, vol. 139(C).
    2. Woojae Kim & Sungmin Ko & Myoungjin Oh & Ie-jung Choi & Jungwoo Shin, 2019. "Is an Incentive Policy for Energy Efficient Products Effective for Air Purifiers? The Case of South Korea," Energies, MDPI, vol. 12(9), pages 1-14, May.
    3. Paola Rocchi & José Manuel Rueda-Cantuche & Alicia Boyano & Alejandro Villanueva, 2019. "Macroeconomic Effects of EU Energy Efficiency Regulations on Household Dishwashers, Washing Machines and Washer Dryers," Energies, MDPI, vol. 12(22), pages 1-21, November.
    4. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    5. Rinaldi, Arthur & Yilmaz, Selin & Patel, Martin K. & Parra, David, 2022. "What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    7. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    8. Hamed, Mohammad M. & Ali, Hesham & Abdelal, Qasem, 2022. "Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijousa Basumatary & Mridula Devi & Konita Basumatary, 2021. "Determinants of Household Electricity Demand in Rural India: A Case Study of the Impacts of Government Subsidies and Surcharges," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 243-249.
    2. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    3. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.
    4. Debnath, Ramit & Bardhan, Ronita & Sunikka-Blank, Minna, 2019. "How does slum rehabilitation influence appliance ownership? A structural model of non-income drivers," Energy Policy, Elsevier, vol. 132(C), pages 418-428.
    5. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    6. Lee, Soo-Jin & Song, Seung-Yeong, 2022. "Time-series analysis of the effects of building and household features on residential end-use energy," Applied Energy, Elsevier, vol. 312(C).
    7. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    8. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.
    9. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    10. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    11. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    12. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    13. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    14. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    15. Wijaya, Muhammad Ery & Tezuka, Tetsuo, 2013. "Measures for improving the adoption of higher efficiency appliances in Indonesian households: An analysis of lifetime use and decision-making in the purchase of electrical appliances," Applied Energy, Elsevier, vol. 112(C), pages 981-987.
    16. Yilmaz, S. & Weber, S. & Patel, M.K., 2019. "Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes," Energy Policy, Elsevier, vol. 133(C).
    17. Torriti, Jacopo, 2013. "The significance of occupancy steadiness in residential consumer response to Time-of-Use pricing: Evidence from a stochastic adjustment model," Utilities Policy, Elsevier, vol. 27(C), pages 49-56.
    18. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    19. Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
    20. Wang, Yuanping & Hou, Lingchun & Hu, Lang & Cai, Weiguang & Wang, Lin & Dai, Cuilian & Chen, Juntao, 2023. "How family structure type affects household energy consumption: A heterogeneous study based on Chinese household evidence," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:117-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.