IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp318-328.html
   My bibliography  Save this article

Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries

Author

Listed:
  • Miranda, D.
  • Costa, C.M.
  • Almeida, A.M.
  • Lanceros-Méndez, S.

Abstract

In order to optimize battery performance, different geometries have been evaluated taking into account their suitability for different applications. These different geometries include conventional, interdigitated batteries and unconventional geometries such as horseshoe, spiral, ring, antenna and gear batteries. The geometry optimization was performed by the finite element method, applying the Doyle/Fuller/Newman model. At 330C, the capacity values for conventional, ring, spiral, horseshoe, gear and interdigitated geometries are 0.58Ahm−2, 149Ahm−2, 182Ahm−2, 216Ahm−2, 289Ahm−2 and 318Ahm−2, respectively.

Suggested Citation

  • Miranda, D. & Costa, C.M. & Almeida, A.M. & Lanceros-Méndez, S., 2016. "Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries," Applied Energy, Elsevier, vol. 165(C), pages 318-328.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:318-328
    DOI: 10.1016/j.apenergy.2015.12.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ping, Ping & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Chen, Chunhua, 2014. "Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method," Applied Energy, Elsevier, vol. 129(C), pages 261-273.
    2. Cheolwoong Lim & Bo Yan & Leilei Yin & Likun Zhu, 2014. "Geometric Characteristics of Three Dimensional Reconstructed Anode Electrodes of Lithium Ion Batteries," Energies, MDPI, vol. 7(4), pages 1-15, April.
    3. Zhao, Rui & Liu, Jie & Gu, Junjie, 2015. "The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery," Applied Energy, Elsevier, vol. 139(C), pages 220-229.
    4. Miranda, Á.G. & Hong, C.W., 2013. "Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions," Applied Energy, Elsevier, vol. 111(C), pages 681-689.
    5. James H. Pikul & Hui Gang Zhang & Jiung Cho & Paul V. Braun & William P. King, 2013. "High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    2. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    3. Miranda, D. & Costa, C.M. & Almeida, A.M. & Lanceros-Méndez, S., 2018. "Computer simulation of the influence of thermal conditions on the performance of conventional and unconventional lithium-ion battery geometries," Energy, Elsevier, vol. 149(C), pages 262-278.
    4. Miranda, D. & Almeida, A.M. & Lanceros-Méndez, S. & Costa, C.M., 2019. "Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries," Energy, Elsevier, vol. 185(C), pages 1250-1262.
    5. Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
    6. Jiang, Z.Y. & Qu, Z.G. & Zhou, L. & Tao, W.Q., 2017. "A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method," Applied Energy, Elsevier, vol. 194(C), pages 530-539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. Gu, Li & Gui, John Yupeng & Wang, Jing V. & Zhu, Guorong & Kang, Jianqiang, 2019. "Parameterized evaluation of thermal characteristics for a lithium-ion battery," Energy, Elsevier, vol. 178(C), pages 21-32.
    3. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    4. Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
    5. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    6. Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
    7. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    8. Mesbahi, Tedjani & Ouari, Ahmed & Ghennam, Tarak & Berkouk, El Madjid & Rizoug, Nassim & Mesbahi, Nadhir & Meradji, Moudrik, 2014. "A stand-alone wind power supply with a Li-ion battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 204-213.
    9. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Xiujun Yue & Jessica Grzyb & Akaash Padmanabha & James H. Pikul, 2020. "A Minimal Volume Hermetic Packaging Design for High-Energy-Density Micro-Energy Systems," Energies, MDPI, vol. 13(10), pages 1-7, May.
    11. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    12. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    13. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    14. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    15. Qing Cao & Runyi Deng & Yue Pan & Ruijie Liu & Yicheng Chen & Guofang Gong & Jun Zou & Huayong Yang & Dong Han, 2024. "Robotic wireless capsule endoscopy: recent advances and upcoming technologies," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    16. Miranda, Á.G. & Chen, T.S. & Hong, C.W., 2013. "Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles," Energy, Elsevier, vol. 59(C), pages 633-641.
    17. Mao, Binbin & Zhao, Chunpeng & Chen, Haodong & Wang, Qingsong & Sun, Jinhua, 2021. "Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery," Applied Energy, Elsevier, vol. 281(C).
    18. Tanaka, T. & Ito, S. & Muramatsu, M. & Yamada, T. & Kamiko, H. & Kakimoto, N. & Inui, Y., 2015. "Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit," Applied Energy, Elsevier, vol. 143(C), pages 200-210.
    19. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    20. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:318-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.