IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp955-969.html
   My bibliography  Save this article

Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings

Author

Listed:
  • Orioli, Aldo
  • Di Gangi, Alessandra

Abstract

The assessment of PV energy in an urban context is extremely complex because many factors have to be considered. Moreover, when the purpose is calculating the realistic amount of the electricity demand of a city that can be covered by the photovoltaic generation, it is necessary to estimate the number of photovoltaic systems whose installation is economically advantageous. Such a topic requires an economic analysis, which is affected by the number of energy and economic parameters involved and the values assigned to them to perform calculations. Some parameters are perfectly known and unvarying, like the paid incentives. Adversely, some parameters, like the efficiency degradation of photovoltaic panels, can only be supposed. Other parameters require some information that is specifically related to each particular photovoltaic system.

Suggested Citation

  • Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:955-969
    DOI: 10.1016/j.apenergy.2013.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Celik, Ali Naci, 2006. "Present status of photovoltaic energy in Turkey and life cycle techno-economic analysis of a grid-connected photovoltaic-house," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 370-387, August.
    2. Myers, Kevin S. & Klein, Sanford A. & Reindl, Douglas T., 2010. "Assessment of high penetration of solar photovoltaics in Wisconsin," Energy Policy, Elsevier, vol. 38(11), pages 7338-7345, November.
    3. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    4. Papadopoulos, A.M. & Karteris, M.M., 2009. "An assessment of the Greek incentives scheme for photovoltaics," Energy Policy, Elsevier, vol. 37(5), pages 1945-1952, May.
    5. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries," Energy Policy, Elsevier, vol. 38(8), pages 4011-4020, August.
    6. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
    7. Celik, Ali Naci & Muneer, Tariq & Clarke, Peter, 2009. "A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15," Renewable Energy, Elsevier, vol. 34(3), pages 849-856.
    8. Vardimon, Ran, 2011. "Assessment of the potential for distributed photovoltaic electricity production in Israel," Renewable Energy, Elsevier, vol. 36(2), pages 591-594.
    9. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2011. "Domestic application of solar PV systems in Ireland: The reality of their economic viability," Energy, Elsevier, vol. 36(10), pages 5865-5876.
    10. Cellura, M. & Di Gangi, A. & Longo, S. & Orioli, A., 2012. "Photovoltaic electricity scenario analysis in urban contests: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2041-2052.
    11. Dusonchet, Luigi & Telaretti, Enrico, 2010. "Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries," Energy Policy, Elsevier, vol. 38(7), pages 3297-3308, July.
    12. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    13. Danchev, Svetoslav & Maniatis, George & Tsakanikas, Aggelos, 2010. "Returns on investment in electricity producing photovoltaic systems under de-escalating feed-in tariffs: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 500-505, January.
    14. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    15. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    16. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    17. Orioli, Aldo & Di Gangi, Alessandra, 2013. "Load mismatch of grid-connected photovoltaic systems: Review of the effects and analysis in an urban context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 13-28.
    18. Poullikkas, Andreas, 2009. "Parametric cost-benefit analysis for the installation of photovoltaic parks in the island of Cyprus," Energy Policy, Elsevier, vol. 37(9), pages 3673-3680, September.
    19. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    20. Sivaraman, Deepak & Horne, Ralph E., 2011. "Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia," Energy Policy, Elsevier, vol. 39(2), pages 586-595, February.
    21. Rigter, Jasper & Vidican, Georgeta, 2010. "Cost and optimal feed-in tariff for small scale photovoltaic systems in China," Energy Policy, Elsevier, vol. 38(11), pages 6989-7000, November.
    22. Stodola, Nathan & Modi, Vijay, 2009. "Penetration of solar power without storage," Energy Policy, Elsevier, vol. 37(11), pages 4730-4736, November.
    23. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    2. Orioli, Aldo & Di Gangi, Alessandra, 2013. "Effects of the Italian financial crisis on the photovoltaic dissemination in a southern city," Energy, Elsevier, vol. 62(C), pages 173-184.
    3. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    4. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    5. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    6. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    7. Cellura, M. & Di Gangi, A. & Longo, S. & Orioli, A., 2012. "Photovoltaic electricity scenario analysis in urban contests: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2041-2052.
    8. Antonelli, Marco & Desideri, Umberto, 2014. "The doping effect of Italian feed-in tariffs on the PV market," Energy Policy, Elsevier, vol. 67(C), pages 583-594.
    9. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    10. Orioli, Aldo & Di Gangi, Alessandra, 2013. "Load mismatch of grid-connected photovoltaic systems: Review of the effects and analysis in an urban context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 13-28.
    11. Martin, Nigel J. & Rice, John L., 2017. "Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design," Renewable Energy, Elsevier, vol. 113(C), pages 211-220.
    12. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the pay-back period of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 122(C), pages 458-470.
    13. Oliver O. Apeh & Edson L. Meyer & Ochuko K. Overen, 2022. "Contributions of Solar Photovoltaic Systems to Environmental and Socioeconomic Aspects of National Development—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
    14. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    15. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    16. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    17. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    18. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    19. Sivaraman, Deepak & Horne, Ralph E., 2011. "Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia," Energy Policy, Elsevier, vol. 39(2), pages 586-595, February.
    20. Gustavo Cáceres & Shahriyar Nasirov & Huili Zhang & Gerardo Araya-Letelier, 2014. "Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter," Sustainability, MDPI, vol. 7(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:955-969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.