IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp863-872.html
   My bibliography  Save this article

Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants

Author

Listed:
  • Xu, Gang
  • Zhou, Luyao
  • Zhao, Shifei
  • Liang, Feifei
  • Xu, Cheng
  • Yang, Yongping

Abstract

Double reheat ultra-supercritical power plants have been receiving an increasing amount of attention because of their high thermal efficiency. However, the superheat degree of extraction steam in double reheat power plants is relatively high and results in a large temperature difference in the heat transfer process of the regenerative system. As a result, this impedes further improvement of the thermal efficiency of double reheat power plants. This paper presents two superheat utilization schemes of extraction steam in a double reheat ultra-supercritical power plant, where one scheme adopts outer steam coolers and the other employs a regenerative turbine. A comparative study of the two proposed schemes is conducted. Thermodynamic and techno-economic analyses are performed to reveal the energy saving effects of the proposed schemes. Thermodynamic analyses under partial load operation conditions are also presented. The results reveal the following. The power generation efficiency of the outer steam cooler scheme and the regenerative turbine scheme increases by 0.16 percentage points and 0.67 percentage points compared with a reference double reheat power plant, respectively. When the load is reduced, the energy saving effects of the proposed schemes become more obvious. The power generation efficiency increments of the outer steam cooler and the regenerative turbine schemes can reach 0.19 and 0.79 percentage points, respectively, at a 50% turbine heat acceptance load. The net annual revenues of the two schemes are 0.29 and 1.59 million USD, respectively. The results indicate that the two proposed schemes can both effectively utilize the superheat of extraction steam for double reheat ultra-supercritical power plants. In comparison, the regenerative turbine scheme is superior to the outer steam cooler scheme in terms of thermodynamic and techno-economic performance.

Suggested Citation

  • Xu, Gang & Zhou, Luyao & Zhao, Shifei & Liang, Feifei & Xu, Cheng & Yang, Yongping, 2015. "Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants," Applied Energy, Elsevier, vol. 160(C), pages 863-872.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:863-872
    DOI: 10.1016/j.apenergy.2015.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915000331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Bin & Xu, Shisen & Gao, Shiwang & Liu, Lianbo & Tao, Jiye & Niu, Hongwei & Cai, Ming & Cheng, Jian, 2010. "Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station," Applied Energy, Elsevier, vol. 87(11), pages 3347-3354, November.
    2. Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
    3. Erlach, B. & Harder, B. & Tsatsaronis, G., 2012. "Combined hydrothermal carbonization and gasification of biomass with carbon capture," Energy, Elsevier, vol. 45(1), pages 329-338.
    4. Han, Xiaoqu & Liu, Ming & Wang, Jinshi & Yan, Junjie & Liu, Jiping & Xiao, Feng, 2014. "Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery – Performances under variable power loads coupled with off-design parameters," Energy, Elsevier, vol. 76(C), pages 406-418.
    5. Bruhn, Matthias, 2002. "Hybrid geothermal–fossil electricity generation from low enthalpy geothermal resources: geothermal feedwater preheating in conventional power plants," Energy, Elsevier, vol. 27(4), pages 329-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    2. Han, Yu & Sun, Yingying, 2020. "Collaborative optimization of energy conversion and NOx removal in boiler cold-end of coal-fired power plants based on waste heat recovery of flue gas and sensible heat utilization of extraction steam," Energy, Elsevier, vol. 207(C).
    3. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    4. Lin, Xiaolong & Liu, Yinhe & Song, Huchao & Liu, Yugang, 2023. "System design for 700 °C power plants: Integration scheme and performance evaluation," Energy, Elsevier, vol. 267(C).
    5. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    6. Han, Yu & Sun, Yingying & Wu, Junjie, 2024. "An efficient and low-cost solar-aided lignite drying power generation system based on cascade utilisation of concentrating and non-concentrating solar energy," Energy, Elsevier, vol. 289(C).
    7. Wang, Maojian & Liu, Guilian & Hui, Chi Wai, 2017. "Novel shortcut optimization model for regenerative steam power plant," Energy, Elsevier, vol. 138(C), pages 529-541.
    8. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    9. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    10. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).
    11. Han, Yu & Sun, Yingying & Wu, Junjie, 2020. "An efficient solar-aided waste heat recovery system based on steam ejector and WTA pre-drying in solar/lignite hybrid power plants," Energy, Elsevier, vol. 208(C).
    12. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    13. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    14. Fu, Wenfeng & Wang, Lanjing & Yang, Yongping, 2021. "Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture: A novel thermal system integration with a carbon capture turbine," Energy, Elsevier, vol. 221(C).
    15. Zhao, Zhigang & Su, Sheng & Si, Ningning & Hu, Song & Wang, Yi & Xu, Jun & Jiang, Long & Chen, Gang & Xiang, Jun, 2017. "Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant," Energy, Elsevier, vol. 119(C), pages 540-548.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuanyuan & Zhou, Luyao & Xu, Gang & Fang, Yaxiong & Zhao, Shifei & Yang, Yongping, 2014. "Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant," Energy, Elsevier, vol. 74(C), pages 202-214.
    2. Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
    3. Hong, Hui & Peng, Shuo & Zhang, Hao & Sun, Jie & Jin, Hongguang, 2017. "Performance assessment of hybrid solar energy and coal-fired power plant based on feed-water preheating," Energy, Elsevier, vol. 128(C), pages 830-838.
    4. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    5. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    6. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2017. "Optimization of the solar field size for the solar–coal hybrid system," Applied Energy, Elsevier, vol. 185(P2), pages 1162-1172.
    7. Wu, Junjie & Hou, Hongjuan & Yang, Yongping & Hu, Eric, 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity," Applied Energy, Elsevier, vol. 157(C), pages 123-133.
    8. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    9. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    10. Fu, Chao & Anantharaman, Rahul & Gundersen, Truls, 2015. "Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants," Energy, Elsevier, vol. 84(C), pages 612-622.
    11. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    12. Somchart Chantasiriwan, 2023. "Reduction in Fuel Consumption in Biomass-Fired Power Plant Using Hybrid Drying System," Energies, MDPI, vol. 16(17), pages 1-14, August.
    13. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    14. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    15. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    16. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    17. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    18. Yang, Dongfeng & Xu, Yang & Liu, Xiaojun & Jiang, Chao & Nie, Fanjie & Ran, Zixu, 2022. "Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture Technologies," Energy, Elsevier, vol. 253(C).
    19. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    20. Zhang, Nan & Hou, Hongjuan & Yu, Gang & Hu, Eric & Duan, Liqiang & Zhao, Jin, 2019. "Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode," Energy, Elsevier, vol. 166(C), pages 918-928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:863-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.