IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222033394.html
   My bibliography  Save this article

System design for 700 °C power plants: Integration scheme and performance evaluation

Author

Listed:
  • Lin, Xiaolong
  • Liu, Yinhe
  • Song, Huchao
  • Liu, Yugang

Abstract

With the increase of steam parameters, how to improve the available energy proportion from high-temperature flue gas and realize efficient utilization of low-grade flue gas heat are two key issues that limit the efficiency improvement of power plants. In this study, a base scheme for the 700 °C single reheat power plant is proposed by the design of flue gas and steam regenerative systems for solving the above issues. However, large cold end loss in boiler and turbine and imperfect thermodynamic processes in flue gas and steam regenerative systems are bottlenecks for further improvement of energy efficiency. An integration scheme of flue gas and steam regenerative systems is proposed, and a comprehensive evaluation is performed from the perspectives of energy, exergy, CO2 emission reduction, and economy. The analysis results indicate that the net efficiency of the integration scheme reaches 50.3%. The exergy loss is reduced by 56.9 MW compared with the base scheme. The increased investment can be recovered within 4.7 years. In the design of the 700 °C power plant, special attention should be paid to perfecting the thermodynamic processes of its flue gas and steam regenerative systems.

Suggested Citation

  • Lin, Xiaolong & Liu, Yinhe & Song, Huchao & Liu, Yugang, 2023. "System design for 700 °C power plants: Integration scheme and performance evaluation," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222033394
    DOI: 10.1016/j.energy.2022.126453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    2. Rezaie, Ali & Tsatsaronis, George & Hellwig, Udo, 2019. "Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm," Energy, Elsevier, vol. 168(C), pages 346-357.
    3. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Anne, Sarath Babu, 2021. "4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation," Energy, Elsevier, vol. 217(C).
    4. Stevanovic, Vladimir D. & Wala, Tadeusz & Muszynski, Slawomir & Milic, Milos & Jovanovic, Milorad, 2014. "Efficiency and power upgrade by an additional high pressure economizer installation at an aged 620 MWe lignite-fired power plant," Energy, Elsevier, vol. 66(C), pages 907-918.
    5. Xie, Shutao & Qin, Peijia & Zhang, Mingliang & Xu, Jisong & Ouyang, Tiancheng, 2022. "A high-efficiency and eco-friendly design for coal-fired power plants: Combined waste heat recovery and electron beam irradiation," Energy, Elsevier, vol. 258(C).
    6. Fu, Wenfeng & Wang, Lanjing & Yang, Yongping, 2021. "Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture: A novel thermal system integration with a carbon capture turbine," Energy, Elsevier, vol. 221(C).
    7. Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
    8. Yousef Haseli, 2021. "Interpretation of Entropy Calculations in Energy Conversion Systems," Energies, MDPI, vol. 14(21), pages 1-14, October.
    9. Duan, Liqiang & Zhao, Mingde & Yang, Yongping, 2012. "Integration and optimization study on the coal-fired power plant with CO2 capture using MEA," Energy, Elsevier, vol. 45(1), pages 107-116.
    10. Xu, Gang & Zhou, Luyao & Zhao, Shifei & Liang, Feifei & Xu, Cheng & Yang, Yongping, 2015. "Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants," Applied Energy, Elsevier, vol. 160(C), pages 863-872.
    11. Li, Yuanyuan & Zhou, Luyao & Xu, Gang & Fang, Yaxiong & Zhao, Shifei & Yang, Yongping, 2014. "Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant," Energy, Elsevier, vol. 74(C), pages 202-214.
    12. Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    2. Stevanovic, Vladimir D. & Petrovic, Milan M. & Wala, Tadeusz & Milivojevic, Sanja & Ilic, Milica & Muszynski, Slawomir, 2019. "Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation," Energy, Elsevier, vol. 187(C).
    3. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    4. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).
    5. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    6. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    7. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    8. Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
    9. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    10. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    11. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    12. Ma, Youfu & Zhang, Hua & Yuan, Yichao & Wang, Zhiyun, 2015. "Optimization of a lignite-fired open pulverizing system boiler process based on variations in the drying agent composition," Energy, Elsevier, vol. 81(C), pages 304-316.
    13. Jiayou Liu & Fengzhong Sun, 2019. "Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control," Energies, MDPI, vol. 12(4), pages 1-20, February.
    14. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    15. Meng Yue & Guoqian Ma & Yuetao Shi, 2020. "Analysis of Gas Recirculation Influencing Factors of a Double Reheat 1000 MW Unit with the Reheat Steam Temperature under Control," Energies, MDPI, vol. 13(16), pages 1-22, August.
    16. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
    18. Jiayou Liu & Fengzhong Sun, 2019. "Node Temperature of the Coupled High-Low Energy Grade Flus Gas Waste Heat Recovery System," Energies, MDPI, vol. 12(2), pages 1-16, January.
    19. Yang, Mei & Liu, Chao, 2017. "The calculation of fluorine plastic economizer in economy by using the equivalent heat drop," Energy, Elsevier, vol. 135(C), pages 674-684.
    20. Han, Yu & Sun, Yingying, 2020. "Collaborative optimization of energy conversion and NOx removal in boiler cold-end of coal-fired power plants based on waste heat recovery of flue gas and sensible heat utilization of extraction steam," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222033394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.