Survey of modern pellet boilers in Austria and Germany – System design and customer satisfaction of residential installations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.09.055
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Verma, V.K. & Bram, S. & Vandendael, I. & Laha, P. & Hubin, A. & De Ruyck, J., 2011. "Residential pellet boilers in Belgium: Standard laboratory and real life performance with respect to European standard and quality labels," Applied Energy, Elsevier, vol. 88(8), pages 2628-2634, August.
- Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
- Fiedler, Frank & Persson, Tomas, 2009. "Carbon monoxide emissions of combined pellet and solar heating systems," Applied Energy, Elsevier, vol. 86(2), pages 135-143, February.
- Persson, Tomas & Fiedler, Frank & Nordlander, Svante & Bales, Chris & Paavilainen, Janne, 2009. "Validation of a dynamic model for wood pellet boilers and stoves," Applied Energy, Elsevier, vol. 86(5), pages 645-656, May.
- Verma, V.K. & Bram, S. & Delattin, F. & De Ruyck, J., 2013. "Real life performance of domestic pellet boiler technologies as a function of operational loads: A case study of Belgium," Applied Energy, Elsevier, vol. 101(C), pages 357-362.
- Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
- Fiedler, Frank & Nordlander, Svante & Persson, Tomas & Bales, Chris, 2006. "Thermal performance of combined solar and pellet heating systems," Renewable Energy, Elsevier, vol. 31(1), pages 73-88.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hecher, Maria & Hatzl, Stefanie & Knoeri, Christof & Posch, Alfred, 2017. "The trigger matters: The decision-making process for heating systems in the residential building sector," Energy Policy, Elsevier, vol. 102(C), pages 288-306.
- Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
- Menegon, Diego & Soppelsa, Anton & Fedrizzi, Roberto, 2017. "Development of a new dynamic test procedure for the laboratory characterization of a whole heating and cooling system," Applied Energy, Elsevier, vol. 205(C), pages 976-990.
- Matschegg, Doris & Carlon, Elisa & Sturmlechner, Rita & Sonnleitner, Andrea & Fuhrmann, Marilene & Dißauer, Christa & Strasser, Christoph & Enigl, Monika, 2023. "Investigation of individual motives and decision paths on residential energy supply systems," Energy, Elsevier, vol. 281(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Persson, Tomas & Wiertzema, Holger & Win, Kaung Myat & Bales, Chris, 2019. "Modelling of dynamics and stratification effects in pellet boilers," Renewable Energy, Elsevier, vol. 134(C), pages 769-782.
- Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
- Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
- Taro Mori & Yusuke Iwama & Hirofumi Hayama & Emad Mushtaha, 2020. "Optimization of a Wood Pellet Boiler System Combined with CO 2 HPs in a Cold Climate Area in Japan," Energies, MDPI, vol. 13(21), pages 1-17, October.
- Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
- Persson, Tomas & Fiedler, Frank & Nordlander, Svante & Bales, Chris & Paavilainen, Janne, 2009. "Validation of a dynamic model for wood pellet boilers and stoves," Applied Energy, Elsevier, vol. 86(5), pages 645-656, May.
- Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
- Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
- Verma, V.K. & Bram, S. & Vandendael, I. & Laha, P. & Hubin, A. & De Ruyck, J., 2011. "Residential pellet boilers in Belgium: Standard laboratory and real life performance with respect to European standard and quality labels," Applied Energy, Elsevier, vol. 88(8), pages 2628-2634, August.
- Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
- Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
- Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
- Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.
- Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
- Richter, Joseph P. & Weisberger, Joshua M. & Bojko, Brian T. & Mollendorf, Joseph C. & DesJardin, Paul E., 2019. "Numerical modeling of homogeneous gas and heterogeneous char combustion for a wood-fired hydronic heater," Renewable Energy, Elsevier, vol. 131(C), pages 890-899.
- Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
- Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
- J. Malaťák & J. Bradna, 2014. "Use of waste material mixtures for energy purposes in small combustion devices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 60(2), pages 50-59.
- Cristiano Franceschinis & Riccardo Scarpa & Mara Thiene & John Rose & Michele Moretto & Raffaele Cavalli, 2016. "Exploring the Spatial Heterogeneity of Individual Preferences for Ambient Heating Systems," Energies, MDPI, vol. 9(6), pages 1-19, May.
- Kong, Lingjun & Tian, ShuangHong & He, Chun & Du, Changming & Tu, YuTing & Xiong, Ya, 2012. "Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust," Applied Energy, Elsevier, vol. 98(C), pages 33-39.
More about this item
Keywords
Residential customer; Statistical study; Questionnaires; Pellet boiler; Heating system; Customer satisfaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:390-403. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.