IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp769-782.html
   My bibliography  Save this article

Modelling of dynamics and stratification effects in pellet boilers

Author

Listed:
  • Persson, Tomas
  • Wiertzema, Holger
  • Win, Kaung Myat
  • Bales, Chris

Abstract

Optimizing solar and pellet heating systems can be performed by system simulations in TRNSYS. However; this requires detailed boiler models that can properly model the thermal behaviour of the boilers, such as stratification and thermal response. This study uses a combination of existing models for modelling of the pellet burner part (TRNSYS Type 210) and the water volume (TRNSYS Type 340). This approach addresses the thermal dynamics and internal stratification more accurately than other available models. The objectives of this work are to develop a method for parameter identification for the model and to validate this method and the model itself. Sets of parameters are identified for two pellet boilers and one pellet stove with a water jacket (extended room heater) and the model is validated with a realistic dynamic operation sequence. The results show that modelling of stratification is essential in order to model the true behaviour of residential boilers. The test sequences used were adequate to parameterise the models and to provide the desired accuracy, except regarding the heat losses to room air. The model shows good accuracy for a stove and one boiler, but slightly worse performance for the other boiler regarding dynamics and modelling of the stratification.

Suggested Citation

  • Persson, Tomas & Wiertzema, Holger & Win, Kaung Myat & Bales, Chris, 2019. "Modelling of dynamics and stratification effects in pellet boilers," Renewable Energy, Elsevier, vol. 134(C), pages 769-782.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:769-782
    DOI: 10.1016/j.renene.2018.11.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verma, V.K. & Bram, S. & Vandendael, I. & Laha, P. & Hubin, A. & De Ruyck, J., 2011. "Residential pellet boilers in Belgium: Standard laboratory and real life performance with respect to European standard and quality labels," Applied Energy, Elsevier, vol. 88(8), pages 2628-2634, August.
    2. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    3. Chasapis, D. & Drosou, V. & Papamechael, I. & Aidonis, A. & Blanchard, R., 2008. "Monitoring and operational results of a hybrid solar-biomass heating system," Renewable Energy, Elsevier, vol. 33(8), pages 1759-1767.
    4. Persson, Tomas & Fiedler, Frank & Nordlander, Svante & Bales, Chris & Paavilainen, Janne, 2009. "Validation of a dynamic model for wood pellet boilers and stoves," Applied Energy, Elsevier, vol. 86(5), pages 645-656, May.
    5. Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
    6. Fiedler, Frank & Nordlander, Svante & Persson, Tomas & Bales, Chris, 2006. "Thermal performance of combined solar and pellet heating systems," Renewable Energy, Elsevier, vol. 31(1), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eo, Jae Won & Kim, Min Jun & Jeong, In Seon & Cho, LaHoon & Kim, Seok Jun & Park, Sunyong & Kim, Dae Hyun, 2021. "Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics," Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Büchner, Daniel & Schraube, Christian & Carlon, Elisa & von Sonntag, Justus & Schwarz, Markus & Verma, Vijay Kumar & Ortwein, Andreas, 2015. "Survey of modern pellet boilers in Austria and Germany – System design and customer satisfaction of residential installations," Applied Energy, Elsevier, vol. 160(C), pages 390-403.
    2. Taro Mori & Yusuke Iwama & Hirofumi Hayama & Emad Mushtaha, 2020. "Optimization of a Wood Pellet Boiler System Combined with CO 2 HPs in a Cold Climate Area in Japan," Energies, MDPI, vol. 13(21), pages 1-17, October.
    3. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    4. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    5. Persson, Tomas & Fiedler, Frank & Nordlander, Svante & Bales, Chris & Paavilainen, Janne, 2009. "Validation of a dynamic model for wood pellet boilers and stoves," Applied Energy, Elsevier, vol. 86(5), pages 645-656, May.
    6. Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
    7. Menegon, Diego & Soppelsa, Anton & Fedrizzi, Roberto, 2017. "Development of a new dynamic test procedure for the laboratory characterization of a whole heating and cooling system," Applied Energy, Elsevier, vol. 205(C), pages 976-990.
    8. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    11. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    12. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    13. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    14. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    15. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    16. Gelegenis, J. & Diakoulaki, D. & Lampropoulou, H. & Giannakidis, G. & Samarakou, M. & Plytas, N., 2014. "Perspectives of energy efficient technologies penetration in the Greek domestic sector, through the analysis of Energy Performance Certificates," Energy Policy, Elsevier, vol. 67(C), pages 56-67.
    17. Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
    18. Zahedi, Alireza & Timasi, Hossein & Kasaeian, Alibakhsh & Mirnezami, Seyed Abolfazl, 2019. "Design and construction of a new dual CHP-type renewable energy power plant based on an improved parabolic trough solar collector and a biofuel generator," Renewable Energy, Elsevier, vol. 135(C), pages 485-495.
    19. Natalia Cid & Juan Jesús Rico & Raquel Pérez-Orozco & Ana Larrañaga, 2021. "Experimental Study of the Performance of a Laboratory-Scale ESP with Biomass Combustion: Discharge Electrode Disposition, Dynamic Control Unit and Aging Effect," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
    20. Fiedler, Frank & Persson, Tomas, 2009. "Carbon monoxide emissions of combined pellet and solar heating systems," Applied Energy, Elsevier, vol. 86(2), pages 135-143, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:769-782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.