IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp609-618.html
   My bibliography  Save this article

Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays

Author

Listed:
  • Chao, Kuei-Hsiang
  • Lin, Yu-Sheng
  • Lai, Uei-Dar

Abstract

In this paper, a maximum power point tracking (MPPT) method that incorporated shading and failure conditions in photovoltaic (PV) module arrays is developed. This MPPT method was built using improved particle swarm optimization (PSO). The PSO algorithm enables PV module arrays to perform MPPT for multi-peak power–voltage (P–V) output characteristic curves when shading or failures occur. This facilitates the tracking of actual maximum power points in PV module arrays. The HIP 2717 PV module produced by SANYO Electric Co., Ltd. was used in this study to assemble various array configurations. The characteristic curves of these array configurations when partial module shading or failure occurred were investigated. Numerous working conditions were selected for dual-peak, three-peak, and four-peak characteristics. PIC microcontrollers were then used to apply both the traditional and the proposed PSO algorithms to enable MPPT. A comparison of the measurement results showed that the proposed PSO algorithm exhibited superior tracking speed, response, and accuracy, compared with those of the traditional PSO algorithm.

Suggested Citation

  • Chao, Kuei-Hsiang & Lin, Yu-Sheng & Lai, Uei-Dar, 2015. "Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays," Applied Energy, Elsevier, vol. 158(C), pages 609-618.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:609-618
    DOI: 10.1016/j.apenergy.2015.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    2. Héctor Zazo & Esteban Del Castillo & Jean François Reynaud & Ramon Leyva, 2012. "MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control," Energies, MDPI, vol. 5(8), pages 1-15, July.
    3. Her-Terng Yau & Chen-Han Wu, 2011. "Comparison of Extremum-Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems," Energies, MDPI, vol. 4(12), pages 1-16, December.
    4. Liu, Yi-Hua & Chen, Jing-Hsiao & Huang, Jia-Wei, 2015. "A review of maximum power point tracking techniques for use in partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 436-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    2. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    3. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    4. Pal, Rudra Sankar & Mukherjee, V., 2020. "Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition," Energy, Elsevier, vol. 212(C).
    5. T. Nagadurga & P. V. R. L. Narasimham & V. S. Vakula, 2021. "Global Maximum Power Point Tracking of Solar Photovoltaic Strings under Partial Shading Conditions Using Cat Swarm Optimization Technique," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    6. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    7. Rezk, Hegazy & Fathy, Ahmed & Abdelaziz, Almoataz Y., 2017. "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 377-386.
    8. Long-Yi Chang & Yi-Nung Chung & Kuei-Hsiang Chao & Jia-Jing Kao, 2018. "Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays," Energies, MDPI, vol. 11(3), pages 1-16, March.
    9. Mohamed Louzazni & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2020. "Management and Performance Control Analysis of Hybrid Photovoltaic Energy Storage System under Variable Solar Irradiation," Energies, MDPI, vol. 13(12), pages 1-23, June.
    10. Kuei-Hsiang Chao & Meng-Cheng Wu, 2016. "Global Maximum Power Point Tracking (MPPT) of a Photovoltaic Module Array Constructed through Improved Teaching-Learning-Based Optimization," Energies, MDPI, vol. 9(12), pages 1-18, November.
    11. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    12. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    13. Peng, Lele & Zheng, Shubin & Chai, Xiaodong & Li, Liming, 2018. "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances," Applied Energy, Elsevier, vol. 210(C), pages 303-316.
    14. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    15. Galal Al-Muthanna & Shuhua Fang & Ibrahim AL-Wesabi & Khaled Ameur & Hossam Kotb & Kareem M. AboRas & Hassan Z. Al Garni & Abdullahi Abubakar Mas’ud, 2023. "A High Speed MPPT Control Utilizing a Hybrid PSO-PID Controller under Partially Shaded Photovoltaic Battery Chargers," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    16. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    17. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    18. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    19. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    20. Andrés Tobón & Julián Peláez-Restrepo & Jhon Montano & Mariana Durango & Jorge Herrera & Asier Ibeas, 2020. "MPPT of a Photovoltaic Panels Array with Partial Shading Using the IPSM with Implementation Both in Simulation as in Hardware," Energies, MDPI, vol. 13(4), pages 1-17, February.
    21. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie & Muhammad Ammirrul Atiqi Mohd Zainuri, 2016. "Implementing a Novel Hybrid Maximum Power Point Tracking Technique in DSP via Simulink/MATLAB under Partially Shaded Conditions," Energies, MDPI, vol. 9(2), pages 1-25, January.
    2. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    3. Kuei-Hsiang Chao, 2015. "A High Performance PSO-Based Global MPP Tracker for a PV Power Generation System," Energies, MDPI, vol. 8(7), pages 1-18, July.
    4. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    5. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    6. Teuvo Suntio & Alon Kuperman, 2019. "Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior," Energies, MDPI, vol. 12(20), pages 1-19, October.
    7. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    8. Pal, Rudra Sankar & Mukherjee, V., 2020. "Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition," Energy, Elsevier, vol. 212(C).
    9. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    10. Jian Zhao & Xuesong Zhou & Youjie Ma & Yiqi Liu, 2017. "Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions," Energies, MDPI, vol. 10(1), pages 1-23, January.
    11. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    12. G, Dileep. & Singh, S.N., 2017. "Selection of non-isolated DC-DC converters for solar photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1230-1247.
    13. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    14. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    15. Kuei-Hsiang Chao & Meng-Cheng Wu, 2016. "Global Maximum Power Point Tracking (MPPT) of a Photovoltaic Module Array Constructed through Improved Teaching-Learning-Based Optimization," Energies, MDPI, vol. 9(12), pages 1-18, November.
    16. Héctor Zazo & Esteban Del Castillo & Jean François Reynaud & Ramon Leyva, 2012. "MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control," Energies, MDPI, vol. 5(8), pages 1-15, July.
    17. Sánchez Reinoso, Carlos R. & Milone, Diego H. & Buitrago, Román H., 2013. "Simulation of photovoltaic centrals with dynamic shading," Applied Energy, Elsevier, vol. 103(C), pages 278-289.
    18. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    19. Marco Balato & Carlo Petrarca, 2020. "The Impact of Reconfiguration on the Energy Performance of the Distributed Maximum Power Point Tracking Approach in PV Plants," Energies, MDPI, vol. 13(6), pages 1-19, March.
    20. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:609-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.