IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i12p2180-2195d15120.html
   My bibliography  Save this article

Comparison of Extremum-Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems

Author

Listed:
  • Her-Terng Yau

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Chen-Han Wu

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

Abstract

Due to Japan’s recent nuclear crisis and petroleum price hikes, the search for renewable energy sources has become an issue of immediate concern. A promising candidate attracting much global attention is solar energy, as it is green and also inexhaustible. A maximum power point tracking (MPPT) controller is employed in such a way that the output power provided by a photovoltaic (PV) system is boosted to its maximum level. However, in the context of abrupt changes in irradiance, conventional MPPT controller approaches suffer from insufficient robustness against ambient variation, inferior transient response and a loss of output power as a consequence of the long duration required of tracking procedures. Accordingly, in this work the maximum power point tracking is carried out successfully using a sliding mode extremum-seeking control (SMESC) method, and the tracking performances of three controllers are compared by simulations, that is, an extremum-seeking controller, a sinusoidal extremum-seeking controller and a sliding mode extremum-seeking controller. Being able to track the maximum power point promptly in the case of an abrupt change in irradiance, the SMESC approach is proven by simulations to be superior in terms of system dynamic and steady state responses, and an excellent robustness along with system stability is demonstrated as well.

Suggested Citation

  • Her-Terng Yau & Chen-Han Wu, 2011. "Comparison of Extremum-Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems," Energies, MDPI, vol. 4(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:12:p:2180-2195:d:15120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/12/2180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/12/2180/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Trejos & Daniel Gonzalez & Carlos Andres Ramos-Paja, 2012. "Modeling of Step-up Grid-Connected Photovoltaic Systems for Control Purposes," Energies, MDPI, vol. 5(6), pages 1-27, June.
    2. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie & Muhammad Ammirrul Atiqi Mohd Zainuri, 2016. "Implementing a Novel Hybrid Maximum Power Point Tracking Technique in DSP via Simulink/MATLAB under Partially Shaded Conditions," Energies, MDPI, vol. 9(2), pages 1-25, January.
    3. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    4. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    5. Pierre Hertzog & Arthur James Swart, 2015. "The Use of an Innovative Jig to Stimulate Awareness of Sustainable Technologies among Freshman Engineering Students," Sustainability, MDPI, vol. 7(7), pages 1-18, July.
    6. Jian Zhao & Xuesong Zhou & Youjie Ma & Yiqi Liu, 2017. "Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions," Energies, MDPI, vol. 10(1), pages 1-23, January.
    7. Héctor Zazo & Esteban Del Castillo & Jean François Reynaud & Ramon Leyva, 2012. "MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control," Energies, MDPI, vol. 5(8), pages 1-15, July.
    8. Mostafa Ahmed & Mohamed Abdelrahem & Ralph Kennel, 2020. "Highly Efficient and Robust Grid Connected Photovoltaic System Based Model Predictive Control with Kalman Filtering Capability," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    9. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie, 2015. "Dual Search Maximum Power Point (DSMPP) Algorithm Based on Mathematical Analysis under Shaded Conditions," Energies, MDPI, vol. 8(10), pages 1-31, October.
    10. Kuei-Hsiang Chao, 2015. "A High Performance PSO-Based Global MPP Tracker for a PV Power Generation System," Energies, MDPI, vol. 8(7), pages 1-18, July.
    11. Chao, Kuei-Hsiang & Lin, Yu-Sheng & Lai, Uei-Dar, 2015. "Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays," Applied Energy, Elsevier, vol. 158(C), pages 609-618.
    12. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:12:p:2180-2195:d:15120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.