IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp352-360.html
   My bibliography  Save this article

Xylene and H2S destruction in high temperature flames under Claus condition

Author

Listed:
  • Ibrahim, S.
  • Gupta, A.K.
  • Al Shoaibi, A.

Abstract

Experimental results on the destruction of H2S and xylene mixtures in H2/O2–N2 flames, at an equivalence ratio of three (Claus condition) are presented. The combustion generated products, including excited radical species were analyzed using flame emission spectroscopy and online gas chromatography (GC). The results showed the oxidation of H2S and H2 that resulted in the formation of high mole fraction of SO2. The formed SO2 further decomposed due to the formation of S2 and CS2 in the reactor. This reveals the possible interaction between sulfurous and hydrocarbon radicals. The examination of emission spectra of excited species between 280nm and 490nm showed C2∗ and C3∗ swan bands, CHO∗ and CH∗ bands and H∗ (Balmer band series). The results also showed bands of SO, SH, S2∗, CS2∗ and SO2∗. The continuum of SO2 afterglow was also observed in the flame. These results provide insight on the reaction chemistry associated with the destruction of xylene and H2S. They are also of significant interest to operators and designers of sulfur plants, as well as related policy-makers. The results show the formation of value added chemicals, such as methane that can also be recovered from acid gases.

Suggested Citation

  • Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:352-360
    DOI: 10.1016/j.apenergy.2015.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    2. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Experimental examination of flame chemistry in hydrogen sulfide-based flames," Applied Energy, Elsevier, vol. 88(8), pages 2601-2611, August.
    3. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    4. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    5. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.
    6. Selim, H. & Gupta, A.K. & Sassi, M., 2012. "Novel error propagation approach for reducing H2S/O2 reaction mechanism," Applied Energy, Elsevier, vol. 93(C), pages 116-124.
    7. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Effect of H2S in methane/air flames on sulfur chemistry and products speciation," Applied Energy, Elsevier, vol. 88(8), pages 2593-2600, August.
    8. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    9. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    10. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xinghua & Ma, Yue & Li, Shuyuan & Yan, Hua & Wang, Daxi & Luo, Yongfeng, 2019. "Study of the reaction mechanism of aluminum based composite fuel and chlorine trifluoride oxide," Energy, Elsevier, vol. 168(C), pages 393-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.
    2. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    3. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    4. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    5. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    6. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    7. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
    8. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    9. Davazdah Emami, Sina & Kasmani, Rafiziana Md. & Hamid, Mahar Diana & Che Hassan, Che Rosmani & Mokhtar, Khairiah Mohd, 2016. "Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1072-1082.
    10. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    11. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    12. El-Melih, A.M. & Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2016. "Experimental examination of syngas recovery from acid gases," Applied Energy, Elsevier, vol. 164(C), pages 64-68.
    13. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    14. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2013. "Effect of reaction parameters on the quality of captured sulfur in Claus process," Applied Energy, Elsevier, vol. 104(C), pages 772-776.
    15. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    16. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    17. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Experimental examination of flame chemistry in hydrogen sulfide-based flames," Applied Energy, Elsevier, vol. 88(8), pages 2601-2611, August.
    18. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.
    19. Nabgan, Walid & Tuan Abdullah, Tuan Amran & Mat, Ramli & Nabgan, Bahador & Gambo, Yahya & Ibrahim, Maryam & Ahmad, Arshad & Jalil, Aishah Abdul & Triwahyono, Sugeng & Saeh, Ibrahim, 2017. "Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 347-357.
    20. Muhammad Arslan Zahid & Muhammad Ahsan & Iftikhar Ahmad & Muhammad Nouman Aslam Khan, 2021. "Process Modeling, Optimization and Cost Analysis of a Sulfur Recovery Unit by Applying Pinch Analysis on the Claus Process in a Gas Processing Plant," Mathematics, MDPI, vol. 10(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:352-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.