IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i8p2601-2611.html
   My bibliography  Save this article

Experimental examination of flame chemistry in hydrogen sulfide-based flames

Author

Listed:
  • Selim, H.
  • Al Shoaibi, A.
  • Gupta, A.K.

Abstract

Spectroscopic examination of the emission spectra of excited species in hydrogen/air flames both without and with H2S addition and in hydrogen sulfide/oxygen flame are conducted. The baseline case of hydrogen/air flame showed one distinct global peak of OH* at 309.13Â nm. However, higher resolution spectrum analysis showed the presence of three major OH* peaks at 306.13, 309.09, and 312.9Â nm. The addition of hydrogen sulfide to hydrogen/air flame resulted in the presence of a bluish cone located at inner regions of the flame. The spectrum of the blue cone showed group of peaks in the 350-470Â nm spectral range. The addition of H2S drastically reduced the peak value of OH* due to extensive consumption of the hydroxyl group during H2S combustion. The group of peaks in the blue cone spectrum can be divided into three major bands. The first band is formed by SO* within 320-350Â nm, the second band is attributed to within 350-400Â nm, and the third band is caused by H* within 400-470Â nm. However, the distinction of band and H* band around 400Â nm is an issue that requires further examination. Absorption bands of SH were observed at 324.03Â nm and 328.62Â nm. The effect of sulfur dioxide on the spectrum was observed by neither emission bands nor absorption bands because of its reaction with elemental oxygen to produce excited sulfur trioxide. Gas chromatography analysis showed that combustion products did not contain any SO2. The spectra of H2S/O2 flame have also been examined under lean conditions (at [Phi]Â =Â 0.5). In contrast to H2/air/H2S flames, the spectra of H2S/O2 showed strong absorption bands of SO2 within 280-310Â nm. Strong continuum was observed between 280 and 460Â nm with distinct group of peaks superimposed in the spectra. The continuum is attributed to the afterglow of singlet and triplet SO2. The superimposed peaks are attributed to and H*.

Suggested Citation

  • Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Experimental examination of flame chemistry in hydrogen sulfide-based flames," Applied Energy, Elsevier, vol. 88(8), pages 2601-2611, August.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2601-2611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00128-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Effect of H2S in methane/air flames on sulfur chemistry and products speciation," Applied Energy, Elsevier, vol. 88(8), pages 2593-2600, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    2. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    3. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    4. El-Melih, A.M. & Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2016. "Experimental examination of syngas recovery from acid gases," Applied Energy, Elsevier, vol. 164(C), pages 64-68.
    5. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    6. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.
    7. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2013. "Effect of reaction parameters on the quality of captured sulfur in Claus process," Applied Energy, Elsevier, vol. 104(C), pages 772-776.
    2. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    3. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    4. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    5. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    6. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    7. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    8. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
    9. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    10. Davazdah Emami, Sina & Kasmani, Rafiziana Md. & Hamid, Mahar Diana & Che Hassan, Che Rosmani & Mokhtar, Khairiah Mohd, 2016. "Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1072-1082.
    11. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.
    12. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    13. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    14. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.
    15. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2601-2611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.