IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp116-124.html
   My bibliography  Save this article

Novel error propagation approach for reducing H2S/O2 reaction mechanism

Author

Listed:
  • Selim, H.
  • Gupta, A.K.
  • Sassi, M.

Abstract

A reduction strategy of hydrogen sulfide/oxygen reaction mechanism is conducted to simplify the detailed mechanism. Direct relation graph and error propagation methodology (DRGEP) has been used. A novel approach of direct elementary reaction error (DERE) has been developed in this study. The developed approach allowed for further reduction of the reaction mechanism. The reduced mechanism has been compared with the detailed mechanism under different conditions to emphasize its validity. The results obtained from the resulting reduced mechanism showed good agreement with that from the detailed mechanism. However, some discrepancies have been found for some species. Hydrogen and oxygen mole fractions showed the largest discrepancy of all combustion products. The reduced mechanism was also found to be capable of tracking the changes that occur in chemical kinetics through the change in reaction conditions. A comparison on the ignition delay time obtained from the reduced mechanism and previous experimental data showed good agreement. The reduced mechanism was used to track changes in mechanistic pathways of Claus reactions with the reaction progress.

Suggested Citation

  • Selim, H. & Gupta, A.K. & Sassi, M., 2012. "Novel error propagation approach for reducing H2S/O2 reaction mechanism," Applied Energy, Elsevier, vol. 93(C), pages 116-124.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:116-124
    DOI: 10.1016/j.apenergy.2011.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911000651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    2. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.
    3. Muhammad Arslan Zahid & Muhammad Ahsan & Iftikhar Ahmad & Muhammad Nouman Aslam Khan, 2021. "Process Modeling, Optimization and Cost Analysis of a Sulfur Recovery Unit by Applying Pinch Analysis on the Claus Process in a Gas Processing Plant," Mathematics, MDPI, vol. 10(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:116-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.