IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v153y2015icp15-21.html
   My bibliography  Save this article

Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor

Author

Listed:
  • Lo, An-Ya
  • Jheng, Yu
  • Huang, Tsao-Cheng
  • Tseng, Chuan-Ming

Abstract

In order to improve the energy density and power density of supercapacitors, the main concepts of this study are to exploit advantages of three different materials: high energy density of ruthenium oxides (RuO2), high power density of mesoporous carbon CMK-3, and high conductivity of carbon nanotubes (CNTs) to form a composite electrode.

Suggested Citation

  • Lo, An-Ya & Jheng, Yu & Huang, Tsao-Cheng & Tseng, Chuan-Ming, 2015. "Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor," Applied Energy, Elsevier, vol. 153(C), pages 15-21.
  • Handle: RePEc:eee:appene:v:153:y:2015:i:c:p:15-21
    DOI: 10.1016/j.apenergy.2015.04.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191500505X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patyk, Andreas, 2013. "Thermoelectric generators for efficiency improvement of power generation by motor generators – Environmental and economic perspectives," Applied Energy, Elsevier, vol. 102(C), pages 1448-1457.
    2. da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.
    3. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    4. Jiao, Kui & Li, Xianguo & Yin, Yan & Zhou, Yibo & Yu, Shuhai & Du, Qing, 2012. "Effects of various operating conditions on the hydrogen absorption processes in a metal hydride tank," Applied Energy, Elsevier, vol. 94(C), pages 257-269.
    5. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Pei & Isaacs, Jacqueline A. & Eckelman, Matthew J., 2016. "Net energy benefits of carbon nanotube applications," Applied Energy, Elsevier, vol. 173(C), pages 624-634.
    2. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2016. "Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors," Applied Energy, Elsevier, vol. 178(C), pages 260-268.
    3. Zhao, Liwei & Li, Hongji & Li, Mingji & Xu, Sheng & Li, Cuiping & Qu, Changqing & Zhang, Lijun & Yang, Baohe, 2016. "Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres," Applied Energy, Elsevier, vol. 162(C), pages 197-206.
    4. Zhang, Jijun & Chen, Zexiang & Wang, Yan & Li, Hai, 2016. "Morphology-controllable synthesis of 3D CoNiO2 nano-networks as a high-performance positive electrode material for supercapacitors," Energy, Elsevier, vol. 113(C), pages 943-948.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    3. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    4. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    5. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    6. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    8. Sun, Li & Walker, Paul & Feng, Kaiwu & Zhang, Nong, 2018. "Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter," Energy, Elsevier, vol. 142(C), pages 436-446.
    9. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    10. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    11. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    12. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    13. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    14. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    15. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    16. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2020. "Safe and Efficient Polymer Electrolyte Membrane Fuel Cell Control Using Successive Linearization Based Model Predictive Control Validated on Real Vehicle Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
    17. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    18. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    19. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    20. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:153:y:2015:i:c:p:15-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.