Effectiveness of pavement-solar energy system – An experimental study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2014.10.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
- Zhao, Zhen-Yu & Zuo, Jian & Fan, Lei-Lei & Zillante, George, 2011. "Impacts of renewable energy regulations on the structure of power generation in China – A critical analysis," Renewable Energy, Elsevier, vol. 36(1), pages 24-30.
- Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
- Yuan, Xueliang & Wang, Xujiang & Zuo, Jian, 2013. "Renewable energy in buildings in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 1-8.
- Pascual-Muñoz, P. & Castro-Fresno, D. & Serrano-Bravo, P. & Alonso-Estébanez, A., 2013. "Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors," Applied Energy, Elsevier, vol. 111(C), pages 324-332.
- Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
- Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
- Hamada, Yasuhiro & Nakamura, Makoto & Kubota, Hideki, 2007. "Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy," Applied Energy, Elsevier, vol. 84(2), pages 117-134, February.
- Yuan, Xueliang & Zuo, Jian & Ma, Chunyuan, 2011. "Social acceptance of solar energy technologies in China--End users' perspective," Energy Policy, Elsevier, vol. 39(3), pages 1031-1036, March.
- Yuan, Xueliang & Zuo, Jian, 2011. "Transition to low carbon energy policies in China--from the Five-Year Plan perspective," Energy Policy, Elsevier, vol. 39(6), pages 3855-3859, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
- Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
- Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
- Mansour Fakhri & Sajad Javadi & Reza Sedghi & Alireza Sassani & Ali Arabzadeh & Behnam Baveli Bahmai, 2021. "Microwave Induction Heating of Polymer-Modified Asphalt Materials for Self-Healing and Deicing," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
- Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
- Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
- Jiang, Wei & Yuan, Dongdong & Xu, Shudong & Hu, Huitao & Xiao, Jingjing & Sha, Aimin & Huang, Yue, 2017. "Energy harvesting from asphalt pavement using thermoelectric technology," Applied Energy, Elsevier, vol. 205(C), pages 941-950.
- Anne Mäkiranta & Erkki Hiltunen, 2019. "Utilizing Asphalt Heat Energy in Finnish Climate Conditions," Energies, MDPI, vol. 12(11), pages 1-11, June.
- Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
- Johnsson, Josef & Adl-Zarrabi, Bijan, 2020. "A numerical and experimental study of a pavement solar collector for the northern hemisphere," Applied Energy, Elsevier, vol. 260(C).
- Roshani, Hossein & Dessouky, Samer & Montoya, Arturo & Papagiannakis, A.T., 2016. "Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study," Applied Energy, Elsevier, vol. 182(C), pages 210-218.
- Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
- Guo, Lukai & Lu, Qing, 2017. "Modeling a new energy harvesting pavement system with experimental verification," Applied Energy, Elsevier, vol. 208(C), pages 1071-1082.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
- Shi, Qian & Yu, Tao & Zuo, Jian, 2015. "What leads to low-carbon buildings? A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 726-734.
- Zhao, Zhen-Yu & Zuo, Jian & Zillante, George, 2013. "Factors influencing the success of BOT power plant projects in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 446-453.
- Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
- Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
- Yuan, Xueliang & Mi, Mi & Mu, Ruimin & Zuo, Jian, 2013. "Strategic route map of sulphur dioxide reduction in China," Energy Policy, Elsevier, vol. 60(C), pages 844-851.
- Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
- Sakr, Mohamed & Liu, Shuli, 2014. "A comprehensive review on applications of ohmic heating (OH)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 262-269.
- Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
- Shi, Qian & Lai, Xiaodong & Xie, Xin & Zuo, Jian, 2014. "Assessment of green building policies – A fuzzy impact matrix approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 203-211.
- Pavel Neuberger & Radomír Adamovský, 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps," Energies, MDPI, vol. 12(10), pages 1-14, May.
- Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
- Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
- Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
- Lin, Wenye & Ma, Zhenjun, 2016. "Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors," Energy, Elsevier, vol. 106(C), pages 23-37.
- Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
- Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong, 2020. "Collaborative optimization of ground source heat pump-radiant ceiling air conditioning system based on response surface method and NSGA-II," Renewable Energy, Elsevier, vol. 147(P1), pages 249-264.
- Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
- Parrales, Arianna & Colorado, Dario & Huicochea, Armando & Díaz, Juan & Alfredo Hernández, J., 2014. "Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator," Applied Energy, Elsevier, vol. 127(C), pages 156-165.
- Noorollahi, Younes & Gholami Arjenaki, Hamidreza & Ghasempour, Roghayeh, 2017. "Thermo-economic modeling and GIS-based spatial data analysis of ground source heat pump systems for regional shallow geothermal mapping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 648-660.
More about this item
Keywords
Pavement; Solar heat exchanger; Soil heat reservoir; Heat absorptivity; Thermal storage effectiveness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:138:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.