IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i2p117-134.html
   My bibliography  Save this article

Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy

Author

Listed:
  • Hamada, Yasuhiro
  • Nakamura, Makoto
  • Kubota, Hideki

Abstract

This paper aims to propose a hybrid system for snow storage/melting and air conditioning by using renewable energy-resources, and clarify the effects of an actual realized application. First, the outline of the system installed at an office building, which was completed in Sapporo, Japan in 2001, is shown. The hybrid system is composed of an underground thermal utility for snow melting by using vertical earth heat-exchangers and space cooling through seasonal cold storage of snow-and-ice cryogenic energy. Second, at the comparatively severe climatic conditions (the lowest outside air-temperature -9.2 °C and the amount of daily snowfall 8.1 cm), it was found that the underground thermal utilization system contributes to preventing freezing of a road surface, and that the road-surface exposure rate was approximately 90%. The effectiveness of this system on energy conservation, environmental protection and cost was verified through numerical analyses. Also, as a result of measuring snow-storage characteristics and space-cooling performance, the effective amount of snow stored on the first day of the space-cooling period was approximately 74%, which gave comparatively good agreement with the predicted value.

Suggested Citation

  • Hamada, Yasuhiro & Nakamura, Makoto & Kubota, Hideki, 2007. "Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy," Applied Energy, Elsevier, vol. 84(2), pages 117-134, February.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:2:p:117-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00084-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Huining & Shi, Hao & Tan, Yiqiu & Ye, Qing & Liu, Xiujie, 2022. "Modeling and assessment of operation economic benefits for hydronic snow melting pavement system," Applied Energy, Elsevier, vol. 326(C).
    2. Hamada, Yasuhiro & Nagata, Tsutomu & Kubota, Hideki & Ono, Takayuki & Musha, Ryosuke, 2014. "Development and characteristics of a method for self-contained ice production using cold outdoor air in winter," Energy, Elsevier, vol. 68(C), pages 939-946.
    3. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    4. Cao, Xuan & Kong, Gangqiang & Han, Chanjuan, 2024. "Feasibility assessment of implementing energy pile-based snowmelt system on a practical bridge deck in diverse climate conditions across China," Energy, Elsevier, vol. 290(C).
    5. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    6. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
    7. Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
    8. Hamada, Yasuhiro & Nagata, Tsutomu & Kubota, Hideki & Ono, Takayuki & Hashimoto, Yoshiaki, 2012. "Study on a snow storage system in a renovated space," Renewable Energy, Elsevier, vol. 41(C), pages 401-406.
    9. Zhou, Zhihua & Wang, Xiaojuan & Zhang, Xiaoyan & Chen, Guanyi & Zuo, Jian & Pullen, Stephen, 2015. "Effectiveness of pavement-solar energy system – An experimental study," Applied Energy, Elsevier, vol. 138(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:2:p:117-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.