IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v137y2015icp931-937.html
   My bibliography  Save this article

Modular battery design for reliable, flexible and multi-technology energy storage systems

Author

Listed:
  • Rothgang, Susanne
  • Baumhöfer, Thorsten
  • van Hoek, Hauke
  • Lange, Tobias
  • De Doncker, Rik W.
  • Sauer, Dirk Uwe

Abstract

With large scale battery systems being more and more used in demanding applications regarding lifetime, performance and safety, it is of great importance to utilize not only cells with a high cyclic and calendric lifetime but also to optimize the whole system architecture. The aim of this work is therefore, to highlight the benefits of a modular system architecture allowing the use of hybrid battery systems combining high power and high energy cells in a multi-technology system. To achieve an optimized performance, efficiency and lifetime for an electric vehicle the complete drive train topology has to be taken into account instead of optimizing one of the components individually. Consequently, the topic will be analyzed from the system’s point of view, addressing in particular the modularization of the battery as well as the power electronics needed to do so. It will be shown that a highly flexible battery system can be realized by dc-to-dc converters between a modular, hybrid battery system and the drive inverter. By the dc-to-dc converters the battery output voltages and the inverter input voltages are decoupled. Hence, the battery’s topology can be chosen unrestrictedly within a wide range and easily be interconnected to a common dc-link of a different voltage. The benefits of this flexibility will be analyzed in detail showing especially how the lifetime of the battery system can be improved and the impact on system weight.

Suggested Citation

  • Rothgang, Susanne & Baumhöfer, Thorsten & van Hoek, Hauke & Lange, Tobias & De Doncker, Rik W. & Sauer, Dirk Uwe, 2015. "Modular battery design for reliable, flexible and multi-technology energy storage systems," Applied Energy, Elsevier, vol. 137(C), pages 931-937.
  • Handle: RePEc:eee:appene:v:137:y:2015:i:c:p:931-937
    DOI: 10.1016/j.apenergy.2014.06.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Liang & Zhang, Chenbin & He, Yao & Chen, Zonghai, 2014. "A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis," Applied Energy, Elsevier, vol. 113(C), pages 558-564.
    2. Zheng, Yuejiu & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Ma, Hongbin & Dollmeyer, Thomas A. & Freyermuth, Vincent, 2013. "Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model," Applied Energy, Elsevier, vol. 111(C), pages 571-580.
    3. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    4. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    5. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    6. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susanne Rothgang & Matthias Rogge & Jan Becker & Dirk Uwe Sauer, 2015. "Battery Design for Successful Electrification in Public Transport," Energies, MDPI, vol. 8(7), pages 1-23, June.
    2. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    4. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    5. Mohammad Al-Amin & Anup Barai & T.R. Ashwin & James Marco, 2021. "An Insight to the Degradation Behaviour of the Parallel Connected Lithium-Ion Battery Cells," Energies, MDPI, vol. 14(16), pages 1-18, August.
    6. Weiping Diao & Jiuchun Jiang & Hui Liang & Caiping Zhang & Yan Jiang & Leyi Wang & Biqiang Mu, 2016. "Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems," Energies, MDPI, vol. 9(7), pages 1-15, June.
    7. Amin Yazdekhasti & Yahia Zare Mehrjardi, 2020. "Two-echelon three-indenture warranty distribution network: a hybrid branch and bound, Monte-Carlo approach," Operational Research, Springer, vol. 20(2), pages 1113-1158, June.
    8. Rodrigues, E.M.G. & Godina, R. & Catalão, J.P.S., 2017. "Modelling electrochemical energy storage devices in insular power network applications supported on real data," Applied Energy, Elsevier, vol. 188(C), pages 315-329.
    9. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    10. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    11. Wegmann, Raphael & Döge, Volker & Sauer, Dirk Uwe, 2018. "Assessing the potential of a hybrid battery system to reduce battery aging in an electric vehicle by studying the cycle life of a graphite∣NCA high energy and a LTO∣metal oxide high power battery cell," Applied Energy, Elsevier, vol. 226(C), pages 197-212.
    12. Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).
    13. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    3. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    4. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    5. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    6. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    7. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    8. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    9. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    10. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    11. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
    12. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    13. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    14. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    15. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    16. Liu, Xingtao & Chen, Zonghai & Zhang, Chenbin & Wu, Ji, 2014. "A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation," Applied Energy, Elsevier, vol. 123(C), pages 263-272.
    17. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    18. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    19. Liu, Guangming & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Hua, Jianfeng, 2015. "A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications," Applied Energy, Elsevier, vol. 149(C), pages 297-314.
    20. Guan, Ting & Sun, Shun & Gao, Yunzhi & Du, Chunyu & Zuo, Pengjian & Cui, Yingzhi & Zhang, Lingling & Yin, Geping, 2016. "The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries," Applied Energy, Elsevier, vol. 177(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:137:y:2015:i:c:p:931-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.