IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v202y2017icp755-771.html
   My bibliography  Save this article

A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells

Author

Listed:
  • Li, W.
  • Paul, M.C.
  • Rolley, M.
  • Sweet, T.
  • Gao, M.
  • Siviter, J.
  • Montecucco, A.
  • Knox, A.R.
  • Baig, H.
  • Mallick, T.K.
  • Fernandez, E.F.
  • Han, G.
  • Gregory, D.H.
  • Azough, F.
  • Freer, R.

Abstract

Scaling laws serve as a tool to convert the five parameters in a lumped one-diode electrical model of a photovoltaic (PV) cell/module/panel under indoor standard test conditions (STC) into the parameters under any outdoor conditions. By using the transformed parameters, a current-voltage curve can be established under any outdoor conditions to predict the PV cell/module/panel performance. A scaling law is developed for PV modules with and without crossed compound parabolic concentrator (CCPC) based on the experimental current-voltage curves of six flat monocrystalline PV modules collected from literature at variable irradiances and cell temperatures by using nonlinear least squares method. Experiments are performed to validate the model and method on a monocrystalline PV cell at various irradiances and cell temperatures. The proposed scaling law is compared with the existing one, and the former exhibits a much better accuracy when the cell temperature is higher than 40°C. The scaling law of a triple junction flat PV cell is also compared with that of the monocrystalline cell and the CCPC effects on the scaling law are investigated with the monocrystalline PV cell. It is identified that the CCPCs impose a more significant influence on the scaling law for the monocrystalline PV cell in comparison with the triple junction PV cell. The proposed scaling law is applied to predict the electrical performance of PV/thermal modules with CCPC.

Suggested Citation

  • Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Siviter, J. & Montecucco, A. & Knox, A.R. & Baig, H. & Mallick, T.K. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells," Applied Energy, Elsevier, vol. 202(C), pages 755-771.
  • Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:755-771
    DOI: 10.1016/j.apenergy.2017.05.182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrero, C. & Ramírez, D. & Rodríguez, J. & Platero, C.A., 2011. "Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve," Renewable Energy, Elsevier, vol. 36(11), pages 2972-2977.
    2. Sellami, Nazmi & Mallick, Tapas K., 2013. "Optical efficiency study of PV Crossed Compound Parabolic Concentrator," Applied Energy, Elsevier, vol. 102(C), pages 868-876.
    3. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2014. "Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications," Applied Energy, Elsevier, vol. 136(C), pages 363-372.
    4. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    5. Chemisana, Daniel & Collados, Ma Victoria & Quintanilla, Manuel & Atencia, Jesús, 2013. "Holographic lenses for building integrated concentrating photovoltaics," Applied Energy, Elsevier, vol. 110(C), pages 227-235.
    6. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    7. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    8. de Blas, M.A & Torres, J.L & Prieto, E & Garcı́a, A, 2002. "Selecting a suitable model for characterizing photovoltaic devices," Renewable Energy, Elsevier, vol. 25(3), pages 371-380.
    9. Janjai, S. & Laksanaboonsong, J. & Seesaard, T., 2011. "Potential application of concentrating solar power systems for the generation of electricity in Thailand," Applied Energy, Elsevier, vol. 88(12), pages 4960-4967.
    10. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    11. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    12. Carrero, C. & Rodríguez, J. & Ramírez, D. & Platero, C., 2010. "Simple estimation of PV modules loss resistances for low error modelling," Renewable Energy, Elsevier, vol. 35(5), pages 1103-1108.
    13. Al-Alili, A. & Hwang, Y. & Radermacher, R. & Kubo, I., 2012. "A high efficiency solar air conditioner using concentrating photovoltaic/thermal collectors," Applied Energy, Elsevier, vol. 93(C), pages 138-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sweet, T.K.N. & Rolley, M.H. & Li, W. & Paul, M.C. & Johnson, A. & Davies, J.I. & Tuley, R. & Simpson, K. & Almonacid, F.M. & Fernández, E.F. & Knox, A.R., 2018. "Design and characterization of hybrid III–V concentrator photovoltaic–thermoelectric receivers under primary and secondary optical elements," Applied Energy, Elsevier, vol. 226(C), pages 772-783.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, W. & Paul, M.C. & Baig, H. & Siviter, J. & Montecucco, A. & Mallick, T.K. & Knox, A.R., 2019. "A three-point-based electrical model and its application in a photovoltaic thermal hybrid roof-top system with crossed compound parabolic concentrator," Renewable Energy, Elsevier, vol. 130(C), pages 400-415.
    2. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    3. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    4. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    5. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    6. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.
    7. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    8. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    9. de la Parra, I. & Muñoz, M. & Lorenzo, E. & García, M. & Marcos, J. & Martínez-Moreno, F., 2017. "PV performance modelling: A review in the light of quality assurance for large PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 780-797.
    10. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    11. Deihimi, M.H. & Naghizadeh, R.A. & Meyabadi, A. Fattahi, 2016. "Systematic derivation of parameters of one exponential model for photovoltaic modules using numerical information of data sheet," Renewable Energy, Elsevier, vol. 87(P1), pages 676-685.
    12. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    13. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    15. Toledo, F.J. & Blanes, Jose M., 2014. "Geometric properties of the single-diode photovoltaic model and a new very simple method for parameters extraction," Renewable Energy, Elsevier, vol. 72(C), pages 125-133.
    16. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    17. Kumar, Manish & Malik, Prashant & Chandel, Rahul & Chandel, Shyam Singh, 2023. "Development of a novel solar PV module model for reliable power prediction under real outdoor conditions," Renewable Energy, Elsevier, vol. 217(C).
    18. Nader Anani & Haider Ibrahim, 2020. "Adjusting the Single-Diode Model Parameters of a Photovoltaic Module with Irradiance and Temperature," Energies, MDPI, vol. 13(12), pages 1-17, June.
    19. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    20. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:202:y:2017:i:c:p:755-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.