IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v130y2014icp648-657.html
   My bibliography  Save this article

Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage

Author

Listed:
  • White, Alexander
  • McTigue, Joshua
  • Markides, Christos

Abstract

This paper presents a numerical and theoretical analysis of thermal wave propagation in packed bed thermal reservoirs for energy storage applications. In such reservoirs, the range of temperatures encountered is usually such that the solid storage medium will exhibit significant changes in specific heat capacity. This in turn results in non-linear wave propagation and may lead to the formation of shock-like thermal fronts. Such effects have an impact on the exergetic losses due to irreversible heat transfer, and should be taken into account during the design and optimisation of the reservoirs. In the present paper, the emphasis is on thermal losses due to irreversible heat transfer. Frictional (pressure) losses and heat leakage between the storage medium and the environment are also important but are not considered here. The implications of the results for storage material, and particle size are discussed briefly in the context of loss minimisation.

Suggested Citation

  • White, Alexander & McTigue, Joshua & Markides, Christos, 2014. "Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage," Applied Energy, Elsevier, vol. 130(C), pages 648-657.
  • Handle: RePEc:eee:appene:v:130:y:2014:i:c:p:648-657
    DOI: 10.1016/j.apenergy.2014.02.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, Alexander J., 2011. "Loss analysis of thermal reservoirs for electrical energy storage schemes," Applied Energy, Elsevier, vol. 88(11), pages 4150-4159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    2. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    3. Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
    4. Robert Morgan & Christian Rota & Emily Pike-Wilson & Tim Gardhouse & Cian Quinn, 2020. "The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications," Energies, MDPI, vol. 13(19), pages 1-17, October.
    5. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    6. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.
    7. Alberto Benato & Francesco De Vanna & Anna Stoppato, 2022. "Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System," Energies, MDPI, vol. 15(24), pages 1-21, December.
    8. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    9. McTigue, J.D. & White, A.J., 2018. "A comparison of radial-flow and axial-flow packed beds for thermal energy storage," Applied Energy, Elsevier, vol. 227(C), pages 533-541.
    10. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    11. Albert, Max & Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2022. "Operation and performance of Brayton Pumped Thermal Energy Storage with additional latent storage," Applied Energy, Elsevier, vol. 312(C).
    12. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
    13. Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
    14. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    15. Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems," Energy, Elsevier, vol. 106(C), pages 260-269.
    16. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    17. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
    18. An, Xugang & He, Qing & Zhang, Qianxu & Liu, Ruonan & Lu, Chang & Du, Dongmei, 2024. "Physical modeling and dynamic characteristics of pumped thermal energy storage system," Energy, Elsevier, vol. 290(C).
    19. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    20. Baik, Young-Jin & Heo, Jaehyeok & Koo, Junemo & Kim, Minsung, 2014. "The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle," Energy, Elsevier, vol. 75(C), pages 204-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:130:y:2014:i:c:p:648-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.