IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v118y2014icp166-172.html
   My bibliography  Save this item

Accurate simulation of thermoelectric power generating systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Patil, Dipak S. & Arakerimath, Rachayya R. & Walke, Pramod V., 2018. "Thermoelectric materials and heat exchangers for power generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 1-22.
  2. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
  3. Al-Nimr, Moh'd A. & Tashtoush, Bourhan M. & Jaradat, Ahmad A., 2015. "Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate," Energy, Elsevier, vol. 90(P2), pages 1239-1250.
  4. Aranguren, P. & Astrain, D. & Rodríguez, A. & Martínez, A., 2015. "Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber," Applied Energy, Elsevier, vol. 152(C), pages 121-130.
  5. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
  6. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2015. "Constant heat characterisation and geometrical optimisation of thermoelectric generators," Applied Energy, Elsevier, vol. 149(C), pages 248-258.
  7. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  8. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
  9. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
  10. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Zhang, Xiurong & Zeng, Shunqi, 2017. "Probabilistic power flow analysis considering the dependence between power and heat," Applied Energy, Elsevier, vol. 191(C), pages 582-592.
  11. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
  12. Massaguer, E. & Massaguer, A. & Montoro, L. & Gonzalez, J.R., 2014. "Development and validation of a new TRNSYS type for the simulation of thermoelectric generators," Applied Energy, Elsevier, vol. 134(C), pages 65-74.
  13. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
  14. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
  15. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
  16. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Synergistic effect between ordered Bi2Te2.7Se0.3 pillar array and layered Ag electrode for remarkably enhancing thermoelectric device performance," Energy, Elsevier, vol. 77(C), pages 591-596.
  17. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
  18. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
  19. Hwang, Junphil & Kim, Hoon & Wijethunge, Dimuthu & Nandihalli, Nagaraj & Eom, Yoomin & Park, Hwanjoo & Kim, Jungwon & Kim, Woochul, 2017. "More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials," Applied Energy, Elsevier, vol. 205(C), pages 1459-1466.
  20. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.
  21. Zhang, T., 2016. "New thinking on modeling of thermoelectric devices," Applied Energy, Elsevier, vol. 168(C), pages 65-74.
  22. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
  23. Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
  24. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
  25. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
  26. Montecucco, A. & Siviter, J. & Knox, A.R., 2017. "Combined heat and power system for stoves with thermoelectric generators," Applied Energy, Elsevier, vol. 185(P2), pages 1336-1342.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.