IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1632-1644.html
   My bibliography  Save this article

The carbon footprint and non-renewable energy demand of algae-derived biodiesel

Author

Listed:
  • Azadi, Pooya
  • Brownbridge, George
  • Mosbach, Sebastian
  • Smallbone, Andrew
  • Bhave, Amit
  • Inderwildi, Oliver
  • Kraft, Markus

Abstract

We determine the environmental impact of different biodiesel production strategies from algae feedstock in terms of greenhouse gas (GHG) emissions and non-renewable energy consumption, we then benchmark the results against those of conventional and synthetic diesel obtained from fossil resources. The algae cultivation in open pond raceways and the transesterification process for the conversion of algae oil into biodiesel constitute the common elements among all considered scenarios. Anaerobic digestion and hydrothermal gasification are considered for the conversion of the residues from the wet oil extraction route; while integrated gasification–heat and power generation and gasification–Fischer–Tropsch processes are considered for the conversion of the residues from the dry oil extraction route. The GHG emissions per unit energy of the biodiesel are calculated as follows: 41g e-CO2/MJb for hydrothermal gasification, 86g e-CO2/MJb for anaerobic digestion, 109g e-CO2/MJb for gasification–power generation, and 124g e-CO2/MJb for gasification–Fischer–Tropsch. As expected, non-renewable energy consumptions are closely correlated to the GHG values. Also, using the High Dimensional Model Representation (HDMR) method, a global sensitivity analysis over the entire space of input parameters is performed to rank them with respect to their influence on key sustainability metrics. Considering reasonable ranges over which each parameter can vary, the most influential input parameters for the wet extraction route include extractor energy demand and methane yield generated from anaerobic digestion or hydrothermal gasification of the oil extracted-algae. The dominant process input parameters for the dry extraction route include algae oil content, dryer energy demand, and algae annual productivity. The results imply that algal biodiesel production from a dried feedstock may only prove sustainable if a low carbon solution such as solar drying is implemented to help reducing the water content of the feedstock.

Suggested Citation

  • Azadi, Pooya & Brownbridge, George & Mosbach, Sebastian & Smallbone, Andrew & Bhave, Amit & Inderwildi, Oliver & Kraft, Markus, 2014. "The carbon footprint and non-renewable energy demand of algae-derived biodiesel," Applied Energy, Elsevier, vol. 113(C), pages 1632-1644.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1632-1644
    DOI: 10.1016/j.apenergy.2013.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    2. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    3. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cordiner, Stefano & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Impact of biodiesel fuel on engine emissions and Aftertreatment System operation," Applied Energy, Elsevier, vol. 164(C), pages 972-983.
    2. Nirmala, N. & Dawn, S.S. & Harindra, C., 2020. "Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine," Renewable Energy, Elsevier, vol. 147(P1), pages 284-292.
    3. Bhave, Amit & Taylor, Richard H.S. & Fennell, Paul & Livingston, William R. & Shah, Nilay & Dowell, Niall Mac & Dennis, John & Kraft, Markus & Pourkashanian, Mohammed & Insa, Mathieu & Jones, Jenny & , 2017. "Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets," Applied Energy, Elsevier, vol. 190(C), pages 481-489.
    4. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    5. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    7. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
    8. Pambudi, Nugroho Agung & Itoi, Ryuichi & Jalilinasrabady, Saeid & Jaelani, Khasani, 2015. "Performance improvement of a single-flash geothermal power plant in Dieng, Indonesia, upon conversion to a double-flash system using thermodynamic analysis," Renewable Energy, Elsevier, vol. 80(C), pages 424-431.
    9. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    10. Fasahati, Peyman & Liu, J. Jay, 2015. "Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae," Energy, Elsevier, vol. 93(P2), pages 2321-2336.
    11. Kächele, Rebecca & Nurkowski, Daniel & Martin, Jacob & Akroyd, Jethro & Kraft, Markus, 2019. "An assessment of the viability of alternatives to biodiesel transport fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.
    13. Togarcheti, Sarat Chandra & Mediboyina, Maneesh kumar & Chauhan, Vikas Singh & Mukherji, Suparna & Ravi, Sarada & Mudliar, Sandeep Narayan, 2017. "Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 286-294.
    14. Bennion, Edward P. & Ginosar, Daniel M. & Moses, John & Agblevor, Foster & Quinn, Jason C., 2015. "Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways," Applied Energy, Elsevier, vol. 154(C), pages 1062-1071.
    15. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    16. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    17. Yang, Perry Pei-Ju & Quan, Steven Jige & Castro-Lacouture, Daniel & Stuart, Ben J., 2018. "A Geodesign method for managing a closed-loop urban system through algae cultivation," Applied Energy, Elsevier, vol. 231(C), pages 1372-1382.
    18. Xiao, Hanjie & Li, Yizhe & Wang, Hua, 2017. "A stochastic kinetic study of preparing fatty acid from rapeseed oil via subcritical hydrolysis," Applied Energy, Elsevier, vol. 204(C), pages 1084-1093.
    19. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    20. Yu, Xinhai & Yang, Jie & Lu, Haitao & Tu, Shan-Tung & Yan, Jinyue, 2015. "Energy-efficient extraction of fuel from Chlorella vulgaris by ionic liquid combined with CO2 capture," Applied Energy, Elsevier, vol. 160(C), pages 648-655.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    2. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    3. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    4. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    5. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    7. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    9. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    10. Ruth Chinyere Anyanwu & Cristina Rodriguez & Andy Durrant & Abdul Ghani Olabi, 2022. "Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    11. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    13. Martinez-Guerra, Edith & Gude, Veera Gnaneswar & Mondala, Andro & Holmes, William & Hernandez, Rafael, 2014. "Microwave and ultrasound enhanced extractive-transesterification of algal lipids," Applied Energy, Elsevier, vol. 129(C), pages 354-363.
    14. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    15. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    16. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    17. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    18. Michael Acheampong & Qiuyan Yu & Funda Cansu Ertem & Lucy Deba Enomah Ebude & Shakhawat Tanim & Michael Eduful & Mehrdad Vaziri & Erick Ananga, 2019. "Is Ghana Ready to Attain Sustainable Development Goal (SDG) Number 7?—A Comprehensive Assessment of Its Renewable Energy Potential and Pitfalls," Energies, MDPI, vol. 12(3), pages 1-40, January.
    19. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    20. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1632-1644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.